High Contrast Elliptic Operators in Honeycomb Structures

M. Cassier, M. Weinstein
{"title":"High Contrast Elliptic Operators in Honeycomb Structures","authors":"M. Cassier, M. Weinstein","doi":"10.1137/21m1408968","DOIUrl":null,"url":null,"abstract":"We study the band structure of self-adjoint elliptic operators $\\mathbb{A}_g= -\\nabla \\cdot \\sigma_{g} \\nabla$, where $\\sigma_g$ has the symmetries of a honeycomb tiling of $\\mathbb{R}^2$. We focus on the case where $\\sigma_{g}$ is a real-valued scalar: $\\sigma_{g}=1$ within identical, disjoint\"inclusions\", centered at vertices of a honeycomb lattice, and $\\sigma_{g}=g \\gg1 $ (high contrast) in the complement of the inclusion set (bulk). Such operators govern, e.g. transverse electric (TE) modes in photonic crystal media consisting of high dielectric constant inclusions (semi-conductor pillars) within a homogeneous lower contrast bulk (air), a configuration used in many physical studies. Our approach, which is based on monotonicity properties of the associated energy form, extends to a class of high contrast elliptic operators that model heterogeneous and anisotropic honeycomb media. Our results concern the global behavior of dispersion surfaces, and the existence of conical crossings (Dirac points) occurring in the lowest two energy bands as well as in bands arbitrarily high in the spectrum. Dirac points are the source of important phenomena in fundamental and applied physics, e.g. graphene and its artificial analogues, and topological insulators. The key hypotheses are the non-vanishing of the Dirac (Fermi) velocity $v_D(g)$, verified numerically, and a spectral isolation condition, verified analytically in many configurations. Asymptotic expansions, to any order in $g^{-1}$, of Dirac point eigenpairs and $v_D(g)$ are derived with error bounds. Our study illuminates differences between the high contrast behavior of $\\mathbb{A}_g$ and the corresponding strong binding regime for Schroedinger operators.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1408968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We study the band structure of self-adjoint elliptic operators $\mathbb{A}_g= -\nabla \cdot \sigma_{g} \nabla$, where $\sigma_g$ has the symmetries of a honeycomb tiling of $\mathbb{R}^2$. We focus on the case where $\sigma_{g}$ is a real-valued scalar: $\sigma_{g}=1$ within identical, disjoint"inclusions", centered at vertices of a honeycomb lattice, and $\sigma_{g}=g \gg1 $ (high contrast) in the complement of the inclusion set (bulk). Such operators govern, e.g. transverse electric (TE) modes in photonic crystal media consisting of high dielectric constant inclusions (semi-conductor pillars) within a homogeneous lower contrast bulk (air), a configuration used in many physical studies. Our approach, which is based on monotonicity properties of the associated energy form, extends to a class of high contrast elliptic operators that model heterogeneous and anisotropic honeycomb media. Our results concern the global behavior of dispersion surfaces, and the existence of conical crossings (Dirac points) occurring in the lowest two energy bands as well as in bands arbitrarily high in the spectrum. Dirac points are the source of important phenomena in fundamental and applied physics, e.g. graphene and its artificial analogues, and topological insulators. The key hypotheses are the non-vanishing of the Dirac (Fermi) velocity $v_D(g)$, verified numerically, and a spectral isolation condition, verified analytically in many configurations. Asymptotic expansions, to any order in $g^{-1}$, of Dirac point eigenpairs and $v_D(g)$ are derived with error bounds. Our study illuminates differences between the high contrast behavior of $\mathbb{A}_g$ and the corresponding strong binding regime for Schroedinger operators.
蜂窝结构中的高对比度椭圆算子
研究了自伴随椭圆算子$\mathbb{A}_g= -\nabla \cdot \sigma_{g} \nabla$的能带结构,其中$\sigma_g$具有$\mathbb{R}^2$的蜂窝平铺的对称性。我们关注$\sigma_{g}$是实值标量的情况:$\sigma_{g}=1$在相同的、不相交的“内含物”中,以蜂窝晶格的顶点为中心,$\sigma_{g}=g \gg1 $(高对比度)在内含物集(体)的补体中。这些算子控制着,例如,在均匀的低对比度体(空气)中由高介电常数内含物(半导体柱)组成的光子晶体介质中的横向电(TE)模式,这是许多物理研究中使用的一种配置。我们的方法,这是基于相关的能量形式的单调性性质,扩展到一类高对比度的椭圆算子,模拟异质和各向异性蜂窝介质。我们的结果涉及色散表面的整体行为,以及出现在最低的两个能带以及在光谱中任意高的能带中的圆锥形交叉(狄拉克点)的存在。狄拉克点是基础物理学和应用物理学中重要现象的来源,例如石墨烯及其人工类似物和拓扑绝缘体。关键的假设是狄拉克(费米)速度不消失$v_D(g)$,数值验证,以及光谱隔离条件,在许多构型中分析验证。导出了Dirac点特征对和$v_D(g)$在$g^{-1}$中任意阶的渐近展开式,并带有误差界。我们的研究阐明了$\mathbb{A}_g$的高对比度行为和相应的薛定谔算子的强结合制度之间的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信