Triple Roman domination subdivision number in graphs

J. Amjadi, H. Sadeghi
{"title":"Triple Roman domination subdivision number in graphs","authors":"J. Amjadi, H. Sadeghi","doi":"10.56415/csjm.v30.07","DOIUrl":null,"url":null,"abstract":"For a graph $G=(V, E)$, a triple Roman domination function is a function $f: V(G)\\longrightarrow\\{0, 1, 2, 3, 4\\}$ having the property that for any vertex $v\\in V(G)$, if $f(v)<3$, then $f(\\mbox{AN}[v])\\geq|\\mbox{AN}(v)|+3$, where $\\mbox{AN}(v)=\\{w\\in N(v)\\mid f(w)\\geq1\\}$ and $\\mbox{AN}[v]=\\mbox{AN}(v)\\cup\\{v\\}$. The weight of a triple Roman dominating function $f$ is the value $\\omega(f)=\\sum_{v\\in V(G)}f(v)$. The triple Roman domination number of $G$, denoted by $\\gamma_{[3R]}(G)$, equals the minimum weight of a triple Roman dominating function on $G$. {\\em The triple Roman domination subdivision number} $\\mbox{sd}_{\\gamma_{[3R]}}(G)$ of a graph $G$ is the minimum number of edges that must be subdivided (each edge in $G$ can be subdivided at most once) in order to increase the triple Roman domination number. In this paper, we first show that the decision problem associated with $\\mbox{sd}_{\\gamma_{[3R]}}(G)$ is NP-hard and then establish upper bounds on the triple Roman domination subdivision number for arbitrary graphs.","PeriodicalId":262087,"journal":{"name":"Comput. Sci. J. Moldova","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Sci. J. Moldova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56415/csjm.v30.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For a graph $G=(V, E)$, a triple Roman domination function is a function $f: V(G)\longrightarrow\{0, 1, 2, 3, 4\}$ having the property that for any vertex $v\in V(G)$, if $f(v)<3$, then $f(\mbox{AN}[v])\geq|\mbox{AN}(v)|+3$, where $\mbox{AN}(v)=\{w\in N(v)\mid f(w)\geq1\}$ and $\mbox{AN}[v]=\mbox{AN}(v)\cup\{v\}$. The weight of a triple Roman dominating function $f$ is the value $\omega(f)=\sum_{v\in V(G)}f(v)$. The triple Roman domination number of $G$, denoted by $\gamma_{[3R]}(G)$, equals the minimum weight of a triple Roman dominating function on $G$. {\em The triple Roman domination subdivision number} $\mbox{sd}_{\gamma_{[3R]}}(G)$ of a graph $G$ is the minimum number of edges that must be subdivided (each edge in $G$ can be subdivided at most once) in order to increase the triple Roman domination number. In this paper, we first show that the decision problem associated with $\mbox{sd}_{\gamma_{[3R]}}(G)$ is NP-hard and then establish upper bounds on the triple Roman domination subdivision number for arbitrary graphs.
三罗马统治在图中的细分数
对于图$G=(V, E)$,三重罗马支配函数是一个函数$f: V(G)\longrightarrow\{0, 1, 2, 3, 4\}$,它具有以下属性:对于任意顶点$v\in V(G)$,如果$f(v)<3$,则$f(\mbox{AN}[v])\geq|\mbox{AN}(v)|+3$,其中$\mbox{AN}(v)=\{w\in N(v)\mid f(w)\geq1\}$和$\mbox{AN}[v]=\mbox{AN}(v)\cup\{v\}$。三重罗马支配函数$f$的权重是值$\omega(f)=\sum_{v\in V(G)}f(v)$。$G$的三罗马统治数,用$\gamma_{[3R]}(G)$表示,等于$G$上的三罗马统治函数的最小权重。图{\em}$G$的分数$\mbox{sd}_{\gamma_{[3R]}}(G)$是为了增加三罗马统治数而必须细分的最小边数($G$中的每条边最多可以细分一次)。本文首先证明了与$\mbox{sd}_{\gamma_{[3R]}}(G)$相关的决策问题是np困难的,然后建立了任意图的三重罗马统治细分数的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信