SupMR: Circumventing Disk and Memory Bandwidth Bottlenecks for Scale-up MapReduce

Michael Sevilla, I. Nassi, Kleoni Ioannidou, S. Brandt, C. Maltzahn
{"title":"SupMR: Circumventing Disk and Memory Bandwidth Bottlenecks for Scale-up MapReduce","authors":"Michael Sevilla, I. Nassi, Kleoni Ioannidou, S. Brandt, C. Maltzahn","doi":"10.1109/IPDPSW.2014.168","DOIUrl":null,"url":null,"abstract":"Reading input from primary storage (i.e. the ingest phase) and aggregating results (i.e. the merge phase) are important pre- and post-processing steps in large batch computations. Unfortunately, today's data sets are so large that the ingest and merge job phases are now performance bottlenecks. In this paper, we mitigate the ingest and merge bottlenecks by leveraging the scale-up MapReduce model. We introduce an ingest chunk pipeline and a merge optimization that increases CPU utilization (50-100%) and job phase speedups (1.16× - 3.13×) for the ingest and merge phases. Our techniques are based on well-known algorithms and scale-out MapReduce optimizations, but applying them to a scale-up computation framework to mitigate the ingest and merge bottlenecks is novel.","PeriodicalId":153864,"journal":{"name":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2014.168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Reading input from primary storage (i.e. the ingest phase) and aggregating results (i.e. the merge phase) are important pre- and post-processing steps in large batch computations. Unfortunately, today's data sets are so large that the ingest and merge job phases are now performance bottlenecks. In this paper, we mitigate the ingest and merge bottlenecks by leveraging the scale-up MapReduce model. We introduce an ingest chunk pipeline and a merge optimization that increases CPU utilization (50-100%) and job phase speedups (1.16× - 3.13×) for the ingest and merge phases. Our techniques are based on well-known algorithms and scale-out MapReduce optimizations, but applying them to a scale-up computation framework to mitigate the ingest and merge bottlenecks is novel.
SupMR:规避Scale-up MapReduce的磁盘和内存带宽瓶颈
从主存储器读取输入(即摄取阶段)和聚合结果(即合并阶段)是大型批量计算中重要的预处理和后处理步骤。不幸的是,今天的数据集非常大,以至于摄取和合并作业阶段现在成为性能瓶颈。在本文中,我们通过利用缩放MapReduce模型来缓解摄取和合并瓶颈。我们引入了一个摄取块管道和一个合并优化,它可以提高CPU利用率(50-100%),并在摄取和合并阶段提高作业阶段速度(1.16 - 3.13倍)。我们的技术基于众所周知的算法和扩展MapReduce优化,但将它们应用于扩展计算框架以缓解摄取和合并瓶颈是新颖的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信