Comparison of two causal inference methods: linear regression and matching score and introduction of causal forest

Zhiqi Huang, W. Mo
{"title":"Comparison of two causal inference methods: linear regression and matching score and introduction of causal forest","authors":"Zhiqi Huang, W. Mo","doi":"10.1117/12.2679249","DOIUrl":null,"url":null,"abstract":"Under the context of the rapid development of artificial intelligence, the introduction of causal inference will improve the accuracy of machine analysis of data. This work aims to introduce three methods of calculating causal effect, linear regression, propensity score matching and causal forest, illuminate some about the combination of causal inference and matching-learning. Here, we substitute the dataset National Supported Work experiment by Lalonde (1986) into three methods and compare the results. We show experimentally that causal forest Causal forests can minimize data bias and obtain more accurate estimates of causal effects.","PeriodicalId":301595,"journal":{"name":"Conference on Pure, Applied, and Computational Mathematics","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Pure, Applied, and Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2679249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Under the context of the rapid development of artificial intelligence, the introduction of causal inference will improve the accuracy of machine analysis of data. This work aims to introduce three methods of calculating causal effect, linear regression, propensity score matching and causal forest, illuminate some about the combination of causal inference and matching-learning. Here, we substitute the dataset National Supported Work experiment by Lalonde (1986) into three methods and compare the results. We show experimentally that causal forest Causal forests can minimize data bias and obtain more accurate estimates of causal effects.
线性回归与匹配分数两种因果推理方法的比较及因果森林的介绍
在人工智能快速发展的背景下,引入因果推理将提高机器分析数据的准确性。本文介绍了三种计算因果效应的方法:线性回归、倾向得分匹配和因果森林,并对因果推理与匹配学习相结合的一些问题进行了阐述。在这里,我们将Lalonde(1986)的数据集National Supported Work experiment替换为三种方法,并对结果进行比较。我们通过实验证明,因果森林可以最小化数据偏差,并获得更准确的因果效应估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信