Estimation of Types of States in Partial Observable Network Systems

Sayantan Guha
{"title":"Estimation of Types of States in Partial Observable Network Systems","authors":"Sayantan Guha","doi":"10.1109/BigDataCongress.2018.00033","DOIUrl":null,"url":null,"abstract":"Estimating of types of states in network systems is essential for protecting network infrastructures from cyberattacks, managing network traffic, and detecting changes in network systems. It is very difficult to estimate the types of states in network systems due to their high complexity. The accuracy of the estimating the states in network systems depends heavily on the completeness of the collected sensor information. But the state of a network system at a given point in time may be never fully known due to noisy sensors; making more difficult to estimate the entire true state of a network system because certain features of the input data may be missing. In order to estimate the states in a network system in partially observable environments, an approach to estimating the types of states in partially observable cyber systems is presented. This approach involves the use of a convolutional neural network (CNN), and unsupervised learning with elbow method and k-means clustering algorithm.","PeriodicalId":177250,"journal":{"name":"2018 IEEE International Congress on Big Data (BigData Congress)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Congress on Big Data (BigData Congress)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigDataCongress.2018.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating of types of states in network systems is essential for protecting network infrastructures from cyberattacks, managing network traffic, and detecting changes in network systems. It is very difficult to estimate the types of states in network systems due to their high complexity. The accuracy of the estimating the states in network systems depends heavily on the completeness of the collected sensor information. But the state of a network system at a given point in time may be never fully known due to noisy sensors; making more difficult to estimate the entire true state of a network system because certain features of the input data may be missing. In order to estimate the states in a network system in partially observable environments, an approach to estimating the types of states in partially observable cyber systems is presented. This approach involves the use of a convolutional neural network (CNN), and unsupervised learning with elbow method and k-means clustering algorithm.
部分可观测网络系统状态类型的估计
网络系统状态类型的估计对于保护网络基础设施免受网络攻击、管理网络流量和检测网络系统的变化至关重要。由于网络系统的高度复杂性,对其状态类型的估计是非常困难的。网络系统状态估计的准确性很大程度上取决于所采集传感器信息的完整性。但是,由于有噪声的传感器,网络系统在给定时间点的状态可能永远无法完全知道;使估计网络系统的整个真实状态变得更加困难,因为输入数据的某些特征可能会丢失。为了估计部分可观测环境下网络系统的状态,提出了一种估计部分可观测网络系统状态类型的方法。该方法涉及卷积神经网络(CNN)的使用,以及肘部法和k-means聚类算法的无监督学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信