Resilient Robust Model Predictive Control of Inventory Systems for Perishable Good Under Uncertain Forecast Information

Beatrice Ietto, V. Orsini
{"title":"Resilient Robust Model Predictive Control of Inventory Systems for Perishable Good Under Uncertain Forecast Information","authors":"Beatrice Ietto, V. Orsini","doi":"10.1109/ICCSI55536.2022.9970646","DOIUrl":null,"url":null,"abstract":"We consider the inventory control problem for supply chains with deteriorating items and an uncertain future customer demand which is assumed to fluctuate inside a given compact set. The problem is to define a smart and adaptive replenishment policy keeping the actual inventory as close as possible to a desired (possibly time varying) reference despite uncertainties on the decay factor of stocked goods and unexpected customer demand behaviors violating the bounds of the compact set. We propose a method based on a Resilient Robust Model Predictive Control (RRMPC) approach. This requires dealing with a constrained min-max optimization problem. To dramatically reduce the numerical complexity of the algorithm, the control signal is parametrized using B-spline functions.","PeriodicalId":421514,"journal":{"name":"2022 International Conference on Cyber-Physical Social Intelligence (ICCSI)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Cyber-Physical Social Intelligence (ICCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSI55536.2022.9970646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the inventory control problem for supply chains with deteriorating items and an uncertain future customer demand which is assumed to fluctuate inside a given compact set. The problem is to define a smart and adaptive replenishment policy keeping the actual inventory as close as possible to a desired (possibly time varying) reference despite uncertainties on the decay factor of stocked goods and unexpected customer demand behaviors violating the bounds of the compact set. We propose a method based on a Resilient Robust Model Predictive Control (RRMPC) approach. This requires dealing with a constrained min-max optimization problem. To dramatically reduce the numerical complexity of the algorithm, the control signal is parametrized using B-spline functions.
不确定预测信息下易腐货物库存系统的弹性鲁棒模型预测控制
本文研究了具有劣化物品和不确定未来客户需求的供应链的库存控制问题,假设未来客户需求在给定的紧集中波动。问题是定义一个智能和自适应的补充策略,使实际库存尽可能接近期望的参考(可能是时变的),尽管库存商品的衰减系数和意外的客户需求行为违反了紧集的界限。我们提出了一种基于弹性鲁棒模型预测控制(RRMPC)的方法。这需要处理一个受限的最小-最大优化问题。为了显著降低算法的数值复杂度,控制信号采用b样条函数参数化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信