The best of two worlds

NIR News Pub Date : 2020-08-19 DOI:10.1177/0960336020944008
F. Westad, L. Gidskehaug, Chuck Miller
{"title":"The best of two worlds","authors":"F. Westad, L. Gidskehaug, Chuck Miller","doi":"10.1177/0960336020944008","DOIUrl":null,"url":null,"abstract":"With the latest release of Unscrambler, Camo Analytics introduced support for Python scripting, giving users the best of two worlds. This Python extension allows users to tap into the vast ecosystem of Data Science tools that are continually being produced in the Python community, while still leveraging the familiar data handling, validation and visualization features of Unscrambler – all contained within a fully compliant framework. This paper discusses the value propositions that the Python extension can provide to Unscrambler users, and follows this up with some specific examples of common workflows that are enabled by this extension: Data Importing, Spectral Preprocessing and Innovative Modeling methods.","PeriodicalId":113081,"journal":{"name":"NIR News","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NIR News","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0960336020944008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the latest release of Unscrambler, Camo Analytics introduced support for Python scripting, giving users the best of two worlds. This Python extension allows users to tap into the vast ecosystem of Data Science tools that are continually being produced in the Python community, while still leveraging the familiar data handling, validation and visualization features of Unscrambler – all contained within a fully compliant framework. This paper discusses the value propositions that the Python extension can provide to Unscrambler users, and follows this up with some specific examples of common workflows that are enabled by this extension: Data Importing, Spectral Preprocessing and Innovative Modeling methods.
两个世界中最好的
在最新版本的Unscrambler中,Camo Analytics引入了对Python脚本的支持,为用户提供了两个世界中最好的体验。这个Python扩展允许用户利用Python社区不断产生的庞大的数据科学工具生态系统,同时仍然利用Unscrambler熟悉的数据处理、验证和可视化功能——所有这些都包含在一个完全兼容的框架中。本文讨论了Python扩展可以为Unscrambler用户提供的价值主张,并给出了该扩展支持的常见工作流的一些具体示例:数据导入、谱预处理和创新建模方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信