An Online Evolutionary Programming Method for Parameters of Wireless Networks

Jason B. Ernst, J. A. Brown
{"title":"An Online Evolutionary Programming Method for Parameters of Wireless Networks","authors":"Jason B. Ernst, J. A. Brown","doi":"10.1109/BWCCA.2011.83","DOIUrl":null,"url":null,"abstract":"Wireless networks operate in rapidly changing environments. Often parameters for particular algorithms are set with particular environments in mind, or assume certain conditions. When conditions change from interference, user mobility, handover and changing demand, the network may be unable to cope. To solve some of these problems we propose an online evolutionary approach to parameter computation. The online approach allows for quick computation of new parameter values while still retaining some history of past actions. We apply this approach to mixed bias scheduling and demonstrate that the approach works well when compared with existing mixed bias approaches and IEEE 802.11 DCF. The evolutionary programming approach achieves a significantly reduced end-to-end delay while maintaining comparable packet delivery ratio when evaluated using simulation experiments.","PeriodicalId":391671,"journal":{"name":"2011 International Conference on Broadband and Wireless Computing, Communication and Applications","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Broadband and Wireless Computing, Communication and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BWCCA.2011.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Wireless networks operate in rapidly changing environments. Often parameters for particular algorithms are set with particular environments in mind, or assume certain conditions. When conditions change from interference, user mobility, handover and changing demand, the network may be unable to cope. To solve some of these problems we propose an online evolutionary approach to parameter computation. The online approach allows for quick computation of new parameter values while still retaining some history of past actions. We apply this approach to mixed bias scheduling and demonstrate that the approach works well when compared with existing mixed bias approaches and IEEE 802.11 DCF. The evolutionary programming approach achieves a significantly reduced end-to-end delay while maintaining comparable packet delivery ratio when evaluated using simulation experiments.
无线网络参数的在线进化规划方法
无线网络在快速变化的环境中运行。通常,特定算法的参数是根据特定的环境设置的,或者假设了特定的条件。当干扰、用户移动性、切换和需求变化等条件发生变化时,网络可能无法应对。为了解决这些问题,我们提出了一种参数计算的在线进化方法。在线方法允许快速计算新参数值,同时仍然保留过去操作的一些历史记录。我们将该方法应用于混合偏置调度,并证明该方法与现有的混合偏置方法和IEEE 802.11 DCF相比效果良好。进化规划方法在使用模拟实验进行评估时,在保持相当的数据包传送率的同时,显著降低了端到端延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信