Contrastive Uncertainty Learning for Iris Recognition with Insufficient Labeled Samples

Jianze Wei, R. He, Zhenan Sun
{"title":"Contrastive Uncertainty Learning for Iris Recognition with Insufficient Labeled Samples","authors":"Jianze Wei, R. He, Zhenan Sun","doi":"10.1109/IJCB52358.2021.9484388","DOIUrl":null,"url":null,"abstract":"Cross-database recognition is still an unavoidable challenge when deploying an iris recognition system to a new environment. In the paper, we present a compromise problem that resembles the real-world scenario, named iris recognition with insufficient labeled samples. This new problem aims to improve the recognition performance by utilizing partially-or un-labeled data. To address the problem, we propose Contrastive Uncertainty Learning (CUL) by integrating the merits of uncertainty learning and contrastive self-supervised learning. CUL makes two efforts to learn a discriminative and robust feature representation. On the one hand, CUL explores the uncertain acquisition factors and adopts a probabilistic embedding to represent the iris image. In the probabilistic representation, the identity information and acquisition factors are disentangled into the mean and variance, avoiding the impact of uncertain acquisition factors on the identity information. On the other hand, CUL utilizes probabilistic embeddings to generate virtual positive and negative pairs. Then CUL builds its contrastive loss to group the similar samples closely and push the dissimilar samples apart. The experimental results demonstrate the effectiveness of the proposed CUL for iris recognition with insufficient labeled samples.","PeriodicalId":175984,"journal":{"name":"2021 IEEE International Joint Conference on Biometrics (IJCB)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB52358.2021.9484388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Cross-database recognition is still an unavoidable challenge when deploying an iris recognition system to a new environment. In the paper, we present a compromise problem that resembles the real-world scenario, named iris recognition with insufficient labeled samples. This new problem aims to improve the recognition performance by utilizing partially-or un-labeled data. To address the problem, we propose Contrastive Uncertainty Learning (CUL) by integrating the merits of uncertainty learning and contrastive self-supervised learning. CUL makes two efforts to learn a discriminative and robust feature representation. On the one hand, CUL explores the uncertain acquisition factors and adopts a probabilistic embedding to represent the iris image. In the probabilistic representation, the identity information and acquisition factors are disentangled into the mean and variance, avoiding the impact of uncertain acquisition factors on the identity information. On the other hand, CUL utilizes probabilistic embeddings to generate virtual positive and negative pairs. Then CUL builds its contrastive loss to group the similar samples closely and push the dissimilar samples apart. The experimental results demonstrate the effectiveness of the proposed CUL for iris recognition with insufficient labeled samples.
标记样本不足情况下虹膜识别的对比不确定性学习
将虹膜识别系统部署到新环境中,跨数据库识别仍然是一个不可避免的挑战。在本文中,我们提出了一个类似于现实世界场景的折衷问题,即标记样本不足的虹膜识别。这个新问题旨在利用部分或未标记的数据来提高识别性能。为了解决这一问题,我们综合了不确定性学习和对比自监督学习的优点,提出了对比不确定性学习(CUL)。CUL通过两方面的努力来学习一种判别性和鲁棒性的特征表示。一方面,该方法探索了不确定的获取因素,采用概率嵌入的方法对虹膜图像进行表征。在概率表示中,身份信息和获取因素被分解为均值和方差,避免了不确定的获取因素对身份信息的影响。另一方面,CUL利用概率嵌入生成虚拟的正对和负对。然后建立对比损失,将相似的样本紧密分组,将不相似的样本分开。实验结果证明了该方法在标记样本不足的情况下虹膜识别的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信