ChipGAN

Bin He, Feng Gao, Daiqian Ma, Boxin Shi, Ling-yu Duan
{"title":"ChipGAN","authors":"Bin He, Feng Gao, Daiqian Ma, Boxin Shi, Ling-yu Duan","doi":"10.1145/3240508.3240655","DOIUrl":null,"url":null,"abstract":"Style transfer has been successfully applied on photos to generate realistic western paintings. However, because of the inherently different painting techniques adopted by Chinese and western paintings, directly applying existing methods cannot generate satisfactory results for Chinese ink wash painting style transfer. This paper proposes ChipGAN, an end-to-end Generative Adversarial Network based architecture for photo to Chinese ink wash painting style transfer. The core modules of ChipGAN enforce three constraints -- voids, brush strokes, and ink wash tone and diffusion -- to address three key techniques commonly adopted in Chinese ink wash painting. We conduct stylization perceptual study to score the similarity of generated paintings to real paintings by consulting with professional artists based on the newly built Chinese ink wash photo and image dataset. The advantages in visual quality compared with state-of-the-art networks and high stylization perceptual study scores show the effectiveness of the proposed method.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3240655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

Style transfer has been successfully applied on photos to generate realistic western paintings. However, because of the inherently different painting techniques adopted by Chinese and western paintings, directly applying existing methods cannot generate satisfactory results for Chinese ink wash painting style transfer. This paper proposes ChipGAN, an end-to-end Generative Adversarial Network based architecture for photo to Chinese ink wash painting style transfer. The core modules of ChipGAN enforce three constraints -- voids, brush strokes, and ink wash tone and diffusion -- to address three key techniques commonly adopted in Chinese ink wash painting. We conduct stylization perceptual study to score the similarity of generated paintings to real paintings by consulting with professional artists based on the newly built Chinese ink wash photo and image dataset. The advantages in visual quality compared with state-of-the-art networks and high stylization perceptual study scores show the effectiveness of the proposed method.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信