Chinese License Plate Recognition Using Machine and Deep Learning Models

Xiaoyu Zhang, Xu Ni, Y. Deng, Changyu Jiang, Mina Maleki
{"title":"Chinese License Plate Recognition Using Machine and Deep Learning Models","authors":"Xiaoyu Zhang, Xu Ni, Y. Deng, Changyu Jiang, Mina Maleki","doi":"10.1109/PRML52754.2021.9520386","DOIUrl":null,"url":null,"abstract":"The license plate detection and recognition (LPDR) system is one of the practical applications of optical character recognition (OCR) technology in the field of automobile transportation. This paper investigates several state-of-the-art machine and deep learning algorithms for the Chinese license plate recognition based on convolutional neural networks (CNN), long short term memory (LSTM), and k-nearest neighbors (KNN) models. Comparing the performance of these models on the Chinese City Parking Dataset (CCPD) demonstrates that the convolutional recurrent neural network (CRNN) model with an accuracy of 95% is the most accurate and performs better than other models to detect the license plates.","PeriodicalId":429603,"journal":{"name":"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRML52754.2021.9520386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The license plate detection and recognition (LPDR) system is one of the practical applications of optical character recognition (OCR) technology in the field of automobile transportation. This paper investigates several state-of-the-art machine and deep learning algorithms for the Chinese license plate recognition based on convolutional neural networks (CNN), long short term memory (LSTM), and k-nearest neighbors (KNN) models. Comparing the performance of these models on the Chinese City Parking Dataset (CCPD) demonstrates that the convolutional recurrent neural network (CRNN) model with an accuracy of 95% is the most accurate and performs better than other models to detect the license plates.
基于机器和深度学习模型的中国车牌识别
车牌检测识别(LPDR)系统是光学字符识别(OCR)技术在汽车交通领域的实际应用之一。本文研究了几种基于卷积神经网络(CNN)、长短期记忆(LSTM)和k近邻(KNN)模型的中国车牌识别的最先进的机器和深度学习算法。在中国城市停车数据集(CCPD)上比较这些模型的性能表明,卷积递归神经网络(CRNN)模型的准确率为95%,是最准确的,并且比其他模型更好地检测车牌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信