Prediction of rheological parameters of polymers, using gradient boosting algorithm CatBoost

A. Chepurnenko, Tatiana Kondratieva, Timur Deberdeev, V. Akopyan, A. Avakov, V. Chepurnenko
{"title":"Prediction of rheological parameters of polymers, using gradient boosting algorithm CatBoost","authors":"A. Chepurnenko, Tatiana Kondratieva, Timur Deberdeev, V. Akopyan, A. Avakov, V. Chepurnenko","doi":"10.31044/1994-6260-2023-0-6-21-29","DOIUrl":null,"url":null,"abstract":"The article deals with the problem of determining the rheological parameters of polymers from stress relaxation curves using the CatBoost machine learning algorithm. The model is trained on theoretical curves constructed using the non-linear Maxwell-Gurevich equation. A comparison is made with other methods, including the classical algorithm, non-linear optimization methods and artificial neural networks.","PeriodicalId":166286,"journal":{"name":"All the Materials. Encyclopedic Reference Book.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"All the Materials. Encyclopedic Reference Book.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31044/1994-6260-2023-0-6-21-29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The article deals with the problem of determining the rheological parameters of polymers from stress relaxation curves using the CatBoost machine learning algorithm. The model is trained on theoretical curves constructed using the non-linear Maxwell-Gurevich equation. A comparison is made with other methods, including the classical algorithm, non-linear optimization methods and artificial neural networks.
基于梯度增强算法CatBoost的聚合物流变参数预测
本文讨论了用CatBoost机器学习算法从应力松弛曲线确定聚合物流变参数的问题。该模型是用非线性Maxwell-Gurevich方程构造的理论曲线来训练的。并与经典算法、非线性优化方法和人工神经网络等方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信