A Theoretical Analysis: Physical Unclonable Functions and the Software Protection Problem

Rishab Nithyanand, John Solis
{"title":"A Theoretical Analysis: Physical Unclonable Functions and the Software Protection Problem","authors":"Rishab Nithyanand, John Solis","doi":"10.1109/SPW.2012.16","DOIUrl":null,"url":null,"abstract":"Physical Unclonable Functions (PUFs) or Physical One Way Functions (P-OWFs) are physical systems whose responses to input stimuli are easy to measure but hard to clone. The unclonability property is due to the accepted hardness of replicating the multitude of uncontrollable manufacturing characteristics and makes PUFs useful in solving problems such as device authentication, software protection and licensing, and certified execution. In this paper, we investigate the effectiveness of PUFs for software protection in hostile offline settings. We show that traditional non-computational (black-box) PUFs cannot solve the software protection problem in this context. We provide two real-world adversary models (weak and strong variants) and security definitions for each. We propose schemes secure against the weak adversary and show that no scheme is secure against a strong adversary without the use of trusted hardware. Finally, we present a protection scheme secure against strong adversaries based on trusted hardware.","PeriodicalId":201519,"journal":{"name":"2012 IEEE Symposium on Security and Privacy Workshops","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Symposium on Security and Privacy Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPW.2012.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Physical Unclonable Functions (PUFs) or Physical One Way Functions (P-OWFs) are physical systems whose responses to input stimuli are easy to measure but hard to clone. The unclonability property is due to the accepted hardness of replicating the multitude of uncontrollable manufacturing characteristics and makes PUFs useful in solving problems such as device authentication, software protection and licensing, and certified execution. In this paper, we investigate the effectiveness of PUFs for software protection in hostile offline settings. We show that traditional non-computational (black-box) PUFs cannot solve the software protection problem in this context. We provide two real-world adversary models (weak and strong variants) and security definitions for each. We propose schemes secure against the weak adversary and show that no scheme is secure against a strong adversary without the use of trusted hardware. Finally, we present a protection scheme secure against strong adversaries based on trusted hardware.
理论分析:物理不可克隆功能与软件保护问题
物理不可克隆功能(puf)或物理单向功能(p - owf)是对输入刺激的响应易于测量但难以克隆的物理系统。不可克隆性是由于复制大量不可控制造特性的公认难度,这使得puf在解决诸如设备身份验证、软件保护和许可以及认证执行等问题方面非常有用。在本文中,我们研究了puf在恶意离线设置下对软件保护的有效性。我们表明,传统的非计算(黑箱)puf不能解决在这种情况下的软件保护问题。我们提供了两个真实世界的对手模型(弱和强变体)以及每个模型的安全定义。我们提出了对弱对手安全的方案,并表明如果不使用可信硬件,任何方案都不能对强对手安全。最后,提出了一种基于可信硬件的防御方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信