{"title":"A Consistent and Long-term Mapping Approach for Navigation","authors":"Handuo Zhang, Hasith Karunasekera, Han Wang","doi":"10.31875/2409-9694.2018.05.4","DOIUrl":null,"url":null,"abstract":"The construction and maintenance of a robocentric map is key to high-level mobile robotic tasks like path planning and smart navigation. But the challenge of dynamic environment and huge amount of dense sensor data makes it hard to be implemented in a real-world application for long-term use. In this paper we present a novel mapping approach by incorporating semantic cuboid object detection and multi-view geometry information. The proposed system can precisely describe the incremental 3D environment in real-time and maintain a long-term map by extracting out moving objects. The representation of the map is a collection of sub-volumes which can be utilized to perform pose graph optimization to address the challenge of building a consistent and scalable map. These sub-volumes are first aligned by localization module and refined by fusing the active volumes using co-visible graph. With the proposed framework we can obtain the object-level constraints and propose a consistent obstacle mapping system combining multi-view geometry with obstacle detection to obtain robust static map in a complex environment. Public dataset and self-collected data demonstrate the efficiency and consistency of our proposed approach.","PeriodicalId":234563,"journal":{"name":"International Journal of Robotics and Automation Technology","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics and Automation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31875/2409-9694.2018.05.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The construction and maintenance of a robocentric map is key to high-level mobile robotic tasks like path planning and smart navigation. But the challenge of dynamic environment and huge amount of dense sensor data makes it hard to be implemented in a real-world application for long-term use. In this paper we present a novel mapping approach by incorporating semantic cuboid object detection and multi-view geometry information. The proposed system can precisely describe the incremental 3D environment in real-time and maintain a long-term map by extracting out moving objects. The representation of the map is a collection of sub-volumes which can be utilized to perform pose graph optimization to address the challenge of building a consistent and scalable map. These sub-volumes are first aligned by localization module and refined by fusing the active volumes using co-visible graph. With the proposed framework we can obtain the object-level constraints and propose a consistent obstacle mapping system combining multi-view geometry with obstacle detection to obtain robust static map in a complex environment. Public dataset and self-collected data demonstrate the efficiency and consistency of our proposed approach.