A protein interaction verification system based on a neural network algorithm

Min Su Lee, S. Park, Min Kyung Kim
{"title":"A protein interaction verification system based on a neural network algorithm","authors":"Min Su Lee, S. Park, Min Kyung Kim","doi":"10.1109/CSBW.2005.15","DOIUrl":null,"url":null,"abstract":"Large amounts of protein-protein interaction data have been identified using various genome-scale screening techniques. Although interaction data is a valuable resource, high-throughput datasets are prone to higher false positive rates. We developed a new reliability assessment system for protein-protein interaction dataset of yeast that can identify real interacting protein pairs from noisy dataset. The system is based on a neural network algorithm, and utilizes three characteristics of interacting proteins: 1) interacting proteins share similar functional category, 2) interacting proteins must locate in close proximity, at least transiently, and 3) an interacting protein pair is tightly linked with other proteins in the protein interaction network. The statistical evaluation of the neural network classifier by 10-fold cross-validation shows that it performs well with 96% of accuracy on the average. We experimented our classifier with pure 5,564 interactions. The classifier distinguished the yeast two-hybrid dataset into 2,831 true positives and 2,733 false positives.","PeriodicalId":123531,"journal":{"name":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSBW.2005.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Large amounts of protein-protein interaction data have been identified using various genome-scale screening techniques. Although interaction data is a valuable resource, high-throughput datasets are prone to higher false positive rates. We developed a new reliability assessment system for protein-protein interaction dataset of yeast that can identify real interacting protein pairs from noisy dataset. The system is based on a neural network algorithm, and utilizes three characteristics of interacting proteins: 1) interacting proteins share similar functional category, 2) interacting proteins must locate in close proximity, at least transiently, and 3) an interacting protein pair is tightly linked with other proteins in the protein interaction network. The statistical evaluation of the neural network classifier by 10-fold cross-validation shows that it performs well with 96% of accuracy on the average. We experimented our classifier with pure 5,564 interactions. The classifier distinguished the yeast two-hybrid dataset into 2,831 true positives and 2,733 false positives.
基于神经网络算法的蛋白质相互作用验证系统
大量的蛋白质-蛋白质相互作用的数据已经确定使用各种基因组规模的筛选技术。虽然交互数据是一种有价值的资源,但高通量数据集容易产生更高的假阳性率。我们开发了一种新的酵母蛋白质-蛋白质相互作用数据集可靠性评估系统,该系统可以从噪声数据集中识别出真正的相互作用蛋白质对。该系统基于神经网络算法,并利用了相互作用蛋白的三个特征:1)相互作用蛋白具有相似的功能类别,2)相互作用蛋白必须位于近距离,至少是短暂的,3)相互作用蛋白对在蛋白质相互作用网络中与其他蛋白质紧密相连。通过10倍交叉验证对神经网络分类器进行统计评估,结果表明,该分类器的准确率平均达到96%。我们用纯5,564个交互对分类器进行了实验。分类器将酵母双杂交数据集区分为2,831个真阳性和2,733个假阳性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信