Operator Control Parameters and Fine Tuning of Genetic Algorithms (GAs)

{"title":"Operator Control Parameters and Fine Tuning of Genetic Algorithms (GAs)","authors":"","doi":"10.4018/978-1-7998-4105-0.ch007","DOIUrl":null,"url":null,"abstract":"Genetic algorithms (GAs) are heuristic, blind (i.e., black box-based) search techniques. The internal working of GAs is complex and is opaque for the general practitioner. GAs are a set of interconnected procedures that consist of complex interconnected activity among parameters. When a naive GA practitioner tries to implement GA code, the first question that comes into the mind is what are the value of GA control parameters (i.e., various operators such as crossover probability, mutation probability, population size, number of generations, etc. will be set to run a GA code)? This chapter clears all the complexities about the internal interconnected working of GA control parameters. GA can have many variations in its implementation (i.e., mutation alone-based GA, crossover alone-based GA, GA with combination of mutation and crossover, etc.). In this chapter, the authors discuss how variation in GA control parameter settings affects the solution quality.","PeriodicalId":101845,"journal":{"name":"Advances in Computational Intelligence and Robotics","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Intelligence and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-4105-0.ch007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Genetic algorithms (GAs) are heuristic, blind (i.e., black box-based) search techniques. The internal working of GAs is complex and is opaque for the general practitioner. GAs are a set of interconnected procedures that consist of complex interconnected activity among parameters. When a naive GA practitioner tries to implement GA code, the first question that comes into the mind is what are the value of GA control parameters (i.e., various operators such as crossover probability, mutation probability, population size, number of generations, etc. will be set to run a GA code)? This chapter clears all the complexities about the internal interconnected working of GA control parameters. GA can have many variations in its implementation (i.e., mutation alone-based GA, crossover alone-based GA, GA with combination of mutation and crossover, etc.). In this chapter, the authors discuss how variation in GA control parameter settings affects the solution quality.
遗传算法的算子控制参数与微调
遗传算法(GAs)是启发式的、盲目的(即基于黑箱的)搜索技术。GAs的内部工作是复杂的,对全科医生来说是不透明的。GAs是一组相互连接的过程,由参数之间复杂的相互连接的活动组成。当一个幼稚的遗传算法从业者试图实现遗传代码时,首先想到的问题是遗传算法控制参数的值是多少(即,将设置各种操作符,如交叉概率、突变概率、种群大小、代数等来运行遗传代码)?本章清除了遗传算法控制参数内部互连工作的所有复杂性。遗传算法在实现上可以有许多变化(即,仅基于突变的遗传算法,仅基于交叉的遗传算法,结合突变和交叉的遗传算法等)。在本章中,作者讨论了遗传算法控制参数设置的变化如何影响解的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信