K. Mutib, M. Emaduddin, M. Alsulaiman, R. Hedjar, E. Mattar
{"title":"Motion periodicity based pedestrian detection and particle filter based pedestrian tracking using stereo vision camera","authors":"K. Mutib, M. Emaduddin, M. Alsulaiman, R. Hedjar, E. Mattar","doi":"10.1504/IJCAT.2014.063913","DOIUrl":null,"url":null,"abstract":"A novel method is proposed that adapts a previously proposed LADAR based pedestrian detection and tracking technique by introducing a stereo-vision based segmentation technique for the purpose of pedestrian detection and tracking. The proposed method detects the harmonic motions of limbs and body during a typical human walk and temporally propagates the position, stride, direction and phase using a particle filter. The particle-filter uses a human limb-motion model and is able to track the walking pedestrians in a heavily occluded environment. Potential 3D point clusters belonging to arms and feet are extracted employing an adapted version of RANSAC based segmentation algorithm. A Fourier-transform based periodogram confirms the periodicity for each point-cluster representing limbs. Since RGB or intensity data from the stereo-vision input is ignored and the proposed method completely relies upon 3D data produced by the stereo-vision sensor, reliable illumination invariant pedestrian detection and tracking results are achieved using Daimler-Stereo-Pedestrian-Detection-Dataset. Further lab experiments also confirm the viability of the method within the indoor environment.","PeriodicalId":328187,"journal":{"name":"2012 19th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 19th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCAT.2014.063913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
A novel method is proposed that adapts a previously proposed LADAR based pedestrian detection and tracking technique by introducing a stereo-vision based segmentation technique for the purpose of pedestrian detection and tracking. The proposed method detects the harmonic motions of limbs and body during a typical human walk and temporally propagates the position, stride, direction and phase using a particle filter. The particle-filter uses a human limb-motion model and is able to track the walking pedestrians in a heavily occluded environment. Potential 3D point clusters belonging to arms and feet are extracted employing an adapted version of RANSAC based segmentation algorithm. A Fourier-transform based periodogram confirms the periodicity for each point-cluster representing limbs. Since RGB or intensity data from the stereo-vision input is ignored and the proposed method completely relies upon 3D data produced by the stereo-vision sensor, reliable illumination invariant pedestrian detection and tracking results are achieved using Daimler-Stereo-Pedestrian-Detection-Dataset. Further lab experiments also confirm the viability of the method within the indoor environment.