Karol Kropidlowski, Marcin Kociolek, M. Strzelecki, Dariusz Czubinski
{"title":"Nevus atypical pigment network distinction and irregular streaks detection in skin lesions images","authors":"Karol Kropidlowski, Marcin Kociolek, M. Strzelecki, Dariusz Czubinski","doi":"10.1109/SPA.2015.7365135","DOIUrl":null,"url":null,"abstract":"There is no suitable golden standard for the detection of atypical pigment network and irregular streaks applied to skin lesion images. This information however is important in assessment of melanoma in skin dermatoscopic images. Thus there is a need for development of image analysis techniques that satisfy at least subjective criteria defined by dermatologists. In this paper we present the application of histogram based features for detection of atypical pigment network and shape based features supplemented by artificial neural network for detection of irregular streaks. Preliminary test results are promising, for analyzed melanoma images we get 97,7% correctly detected pigmentation networks and 94,8% correctly detected irregular streaks. This paper constitutes the part of our efforts to implement the ELM 7-point checklist in order to support melanoma diagnosis and to automate this process.","PeriodicalId":423880,"journal":{"name":"2015 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPA.2015.7365135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
There is no suitable golden standard for the detection of atypical pigment network and irregular streaks applied to skin lesion images. This information however is important in assessment of melanoma in skin dermatoscopic images. Thus there is a need for development of image analysis techniques that satisfy at least subjective criteria defined by dermatologists. In this paper we present the application of histogram based features for detection of atypical pigment network and shape based features supplemented by artificial neural network for detection of irregular streaks. Preliminary test results are promising, for analyzed melanoma images we get 97,7% correctly detected pigmentation networks and 94,8% correctly detected irregular streaks. This paper constitutes the part of our efforts to implement the ELM 7-point checklist in order to support melanoma diagnosis and to automate this process.