Nevus atypical pigment network distinction and irregular streaks detection in skin lesions images

Karol Kropidlowski, Marcin Kociolek, M. Strzelecki, Dariusz Czubinski
{"title":"Nevus atypical pigment network distinction and irregular streaks detection in skin lesions images","authors":"Karol Kropidlowski, Marcin Kociolek, M. Strzelecki, Dariusz Czubinski","doi":"10.1109/SPA.2015.7365135","DOIUrl":null,"url":null,"abstract":"There is no suitable golden standard for the detection of atypical pigment network and irregular streaks applied to skin lesion images. This information however is important in assessment of melanoma in skin dermatoscopic images. Thus there is a need for development of image analysis techniques that satisfy at least subjective criteria defined by dermatologists. In this paper we present the application of histogram based features for detection of atypical pigment network and shape based features supplemented by artificial neural network for detection of irregular streaks. Preliminary test results are promising, for analyzed melanoma images we get 97,7% correctly detected pigmentation networks and 94,8% correctly detected irregular streaks. This paper constitutes the part of our efforts to implement the ELM 7-point checklist in order to support melanoma diagnosis and to automate this process.","PeriodicalId":423880,"journal":{"name":"2015 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPA.2015.7365135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

There is no suitable golden standard for the detection of atypical pigment network and irregular streaks applied to skin lesion images. This information however is important in assessment of melanoma in skin dermatoscopic images. Thus there is a need for development of image analysis techniques that satisfy at least subjective criteria defined by dermatologists. In this paper we present the application of histogram based features for detection of atypical pigment network and shape based features supplemented by artificial neural network for detection of irregular streaks. Preliminary test results are promising, for analyzed melanoma images we get 97,7% correctly detected pigmentation networks and 94,8% correctly detected irregular streaks. This paper constitutes the part of our efforts to implement the ELM 7-point checklist in order to support melanoma diagnosis and to automate this process.
皮肤病变图像中非典型色素网络的区分与不规则条纹的检测
对于皮肤病变图像中不典型色素网络和不规则条纹的检测,目前还没有合适的金标准。然而,这一信息对于皮肤镜图像中黑色素瘤的评估是重要的。因此,有必要发展图像分析技术,至少满足皮肤科医生定义的主观标准。本文提出了基于直方图特征的非典型色素网络检测和基于形状特征的人工神经网络辅助检测不规则条纹的应用。初步的测试结果是有希望的,对于分析的黑色素瘤图像,我们可以正确地检测出97,7%的色素沉着网络和94,8%的不规则条纹。本文是我们努力实施ELM 7点检查表的一部分,以支持黑色素瘤的诊断并使这一过程自动化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信