Object recognition with hierarchical kernel descriptors

Liefeng Bo, Kevin Lai, Xiaofeng Ren, D. Fox
{"title":"Object recognition with hierarchical kernel descriptors","authors":"Liefeng Bo, Kevin Lai, Xiaofeng Ren, D. Fox","doi":"10.1109/CVPR.2011.5995719","DOIUrl":null,"url":null,"abstract":"Kernel descriptors [1] provide a unified way to generate rich visual feature sets by turning pixel attributes into patch-level features, and yield impressive results on many object recognition tasks. However, best results with kernel descriptors are achieved using efficient match kernels in conjunction with nonlinear SVMs, which makes it impractical for large-scale problems. In this paper, we propose hierarchical kernel descriptors that apply kernel descriptors recursively to form image-level features and thus provide a conceptually simple and consistent way to generate image-level features from pixel attributes. More importantly, hierarchical kernel descriptors allow linear SVMs to yield state-of-the-art accuracy while being scalable to large datasets. They can also be naturally extended to extract features over depth images. We evaluate hierarchical kernel descriptors both on the CIFAR10 dataset and the new RGB-D Object Dataset consisting of segmented RGB and depth images of 300 everyday objects.","PeriodicalId":445398,"journal":{"name":"CVPR 2011","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"260","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVPR 2011","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2011.5995719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 260

Abstract

Kernel descriptors [1] provide a unified way to generate rich visual feature sets by turning pixel attributes into patch-level features, and yield impressive results on many object recognition tasks. However, best results with kernel descriptors are achieved using efficient match kernels in conjunction with nonlinear SVMs, which makes it impractical for large-scale problems. In this paper, we propose hierarchical kernel descriptors that apply kernel descriptors recursively to form image-level features and thus provide a conceptually simple and consistent way to generate image-level features from pixel attributes. More importantly, hierarchical kernel descriptors allow linear SVMs to yield state-of-the-art accuracy while being scalable to large datasets. They can also be naturally extended to extract features over depth images. We evaluate hierarchical kernel descriptors both on the CIFAR10 dataset and the new RGB-D Object Dataset consisting of segmented RGB and depth images of 300 everyday objects.
具有层次核描述符的对象识别
内核描述符[1]提供了一种统一的方式,通过将像素属性转换为补丁级特征来生成丰富的视觉特征集,并在许多目标识别任务中产生了令人印象深刻的结果。然而,使用核描述符的最佳结果是使用有效的匹配核与非线性支持向量机相结合,这使得它不适合大规模问题。在本文中,我们提出了分层核描述符,递归地应用核描述符来形成图像级特征,从而提供了一种概念上简单而一致的方法来从像素属性生成图像级特征。更重要的是,分层核描述符允许线性支持向量机产生最先进的精度,同时可扩展到大型数据集。它们也可以自然地扩展到提取深度图像的特征。我们在CIFAR10数据集和新的RGB- d对象数据集上评估了分层内核描述符,该数据集由300个日常物体的分割RGB和深度图像组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信