Word Clustering Using PLSA Enhanced with Long Distance Bigrams

Bassiou Nikoletta, Kotropoulos Constantine
{"title":"Word Clustering Using PLSA Enhanced with Long Distance Bigrams","authors":"Bassiou Nikoletta, Kotropoulos Constantine","doi":"10.1109/ICPR.2010.1027","DOIUrl":null,"url":null,"abstract":"Probabilistic latent semantic analysis is enhanced with long distance bigram models in order to improve word clustering. The long distance bigram probabilities and the interpolated long distance bigram probabilities at varying distances within a context capture different aspects of contextual information. In addition, the baseline bigram, which incorporates trigger-pairs for various histories, is tested in the same framework. The experimental results collected on publicly available corpora (CISI, Cran field, Medline, and NPL) demonstrate the superiority of the long distance bigrams over the baseline bigrams as well as the superiority of the interpolated long distance bigrams against the long distance bigrams and the baseline bigram with trigger-pairs in yielding more compact clusters containing less outliers.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.1027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Probabilistic latent semantic analysis is enhanced with long distance bigram models in order to improve word clustering. The long distance bigram probabilities and the interpolated long distance bigram probabilities at varying distances within a context capture different aspects of contextual information. In addition, the baseline bigram, which incorporates trigger-pairs for various histories, is tested in the same framework. The experimental results collected on publicly available corpora (CISI, Cran field, Medline, and NPL) demonstrate the superiority of the long distance bigrams over the baseline bigrams as well as the superiority of the interpolated long distance bigrams against the long distance bigrams and the baseline bigram with trigger-pairs in yielding more compact clusters containing less outliers.
基于PLSA的长距离双元词聚类
为了提高聚类能力,本文利用长距离双元图模型增强了概率潜在语义分析。长距离重图概率和在上下文中不同距离上插值的长距离重图概率捕获上下文信息的不同方面。此外,在同一框架中测试了包含各种历史记录的触发器对的基线双元图。在公开可用的语料库(CISI, Cran field, Medline和NPL)上收集的实验结果表明,长距离双元图优于基线双元图,而插入的长距离双元图优于长距离双元图和具有触发对的基线双元图,可以产生包含更少异常值的更紧凑的聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信