{"title":"A Divide-and-Conquer Framework for Attention-based Combination of Multiple Investment Strategies","authors":"Xiao Yang, Weiqing Liu, Lewen Wang, Cheng Qu, Jiang Bian","doi":"10.1109/GlobalSIP45357.2019.8969091","DOIUrl":null,"url":null,"abstract":"In order to maximize the profit, investors usually examine diverse investment strategies based on various information when constructing their portfolios. However, they can hardly always construct a profitable portfolio due to the dynamic performance of the strategies and the dynamics of the market state along with the time. To address this challenge, we propose a 2D-attention framework to capture the dynamics of the above two factors in this paper. To capture the dynamic of the first factor, we design a strategy-wise attention model to dynamically combine multiple strategies according to their respective effectiveness. To deal with the second factor, we design a divide-and-conquer framework to learn multiple strategy-wise attention models, which categorizes the whole market periods into a few stable states and jointly learn respective models for each state and then build a state-wise attention model to combine them dynamically for the final task. Extensive experiments on real-world data demonstrate that our 2D-attention framework can significantly outperform several widely-used baselines.","PeriodicalId":221378,"journal":{"name":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP45357.2019.8969091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In order to maximize the profit, investors usually examine diverse investment strategies based on various information when constructing their portfolios. However, they can hardly always construct a profitable portfolio due to the dynamic performance of the strategies and the dynamics of the market state along with the time. To address this challenge, we propose a 2D-attention framework to capture the dynamics of the above two factors in this paper. To capture the dynamic of the first factor, we design a strategy-wise attention model to dynamically combine multiple strategies according to their respective effectiveness. To deal with the second factor, we design a divide-and-conquer framework to learn multiple strategy-wise attention models, which categorizes the whole market periods into a few stable states and jointly learn respective models for each state and then build a state-wise attention model to combine them dynamically for the final task. Extensive experiments on real-world data demonstrate that our 2D-attention framework can significantly outperform several widely-used baselines.