{"title":"Real-time multi-core components for cyber-physical systems","authors":"M. Wahler, M. Oriol, A. Monot","doi":"10.1145/2737166.2737176","DOIUrl":null,"url":null,"abstract":"Developing correct, efficient, and maintainable real-time control software for cyber-physical systems is a notoriously difficult interdisciplinary challenge. Ever more complex control algorithms and the advent of multi-core hardware in embedded systems have made this challenge even harder. Component-based software development promises to help reduce the complexity and to increase the timing predictability for time-critical software. This paper presents FASA, a component-based approach for scalable real-time systems. This approach offers a platform-independent development method with a high degree of predictability, supports multi-core systems by design, and simplifies maintenance. Two case studies validate FASA: an application handling a magnetic levitation device and an example of scalability.","PeriodicalId":359460,"journal":{"name":"2015 18th International ACM SIGSOFT Symposium on Component-Based Software Engineering (CBSE)","volume":"23 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 18th International ACM SIGSOFT Symposium on Component-Based Software Engineering (CBSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2737166.2737176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Developing correct, efficient, and maintainable real-time control software for cyber-physical systems is a notoriously difficult interdisciplinary challenge. Ever more complex control algorithms and the advent of multi-core hardware in embedded systems have made this challenge even harder. Component-based software development promises to help reduce the complexity and to increase the timing predictability for time-critical software. This paper presents FASA, a component-based approach for scalable real-time systems. This approach offers a platform-independent development method with a high degree of predictability, supports multi-core systems by design, and simplifies maintenance. Two case studies validate FASA: an application handling a magnetic levitation device and an example of scalability.