{"title":"A 151nW Second-Order Ternary Delta Modulator for ECG Slope Variation Measurement with Baseline Wandering Resilience","authors":"Xiaochen Tang, Wei Tang","doi":"10.1109/CICC48029.2020.9075953","DOIUrl":null,"url":null,"abstract":"ECG delineation is crucial to Arrhythmia classification and future wearable heart monitoring sensors. This paper presents a second-order ternary delta modulator for ECG delineation. The proposed prototype measures slope variation of the ECG signals to detect the upward/downward-turning points without measuring the instantaneous amplitude. Then fiducial points of the PQRST waves can be located. The interval/segment timing information can be extracted for future on-chip arrhythmia classification. The experiment results show that the system is robust to baseline wandering. The chip can achieve 3.2 mV/ms2 sensitivity with 3 ms timing error. The proposed circuit consumes 151 nW with 1 V supply at a sampling rate of 1 kS/s, and fabricated in 180 nm CMOS process with 0.25 mm2 area occupied. Fiducial points localizing algorithm is realized on a Spartan-6 FPGA.","PeriodicalId":409525,"journal":{"name":"2020 IEEE Custom Integrated Circuits Conference (CICC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC48029.2020.9075953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
ECG delineation is crucial to Arrhythmia classification and future wearable heart monitoring sensors. This paper presents a second-order ternary delta modulator for ECG delineation. The proposed prototype measures slope variation of the ECG signals to detect the upward/downward-turning points without measuring the instantaneous amplitude. Then fiducial points of the PQRST waves can be located. The interval/segment timing information can be extracted for future on-chip arrhythmia classification. The experiment results show that the system is robust to baseline wandering. The chip can achieve 3.2 mV/ms2 sensitivity with 3 ms timing error. The proposed circuit consumes 151 nW with 1 V supply at a sampling rate of 1 kS/s, and fabricated in 180 nm CMOS process with 0.25 mm2 area occupied. Fiducial points localizing algorithm is realized on a Spartan-6 FPGA.