Invariant Salient Region Selection and Scale Normalization of Image

Xianfeng Yang, P. Xue, Q. Tian
{"title":"Invariant Salient Region Selection and Scale Normalization of Image","authors":"Xianfeng Yang, P. Xue, Q. Tian","doi":"10.1109/MMSP.2005.248592","DOIUrl":null,"url":null,"abstract":"Scale estimation is important in image and vision computing. We propose in this paper an invariant salient region selection and scale normalization method which is robust to rotation, scaling, translation and cropping. This new method is based on the first and second order invariant geometric moments calculated from an intensity difference map. The first-order moments are used to obtain invariant circular regions for different scale hypotheses, while a second-order moment is chosen as region descriptor to select the most salient scale. The image is normalized by scale of the selected salient region. Experiments demonstrate effectiveness of this method","PeriodicalId":191719,"journal":{"name":"2005 IEEE 7th Workshop on Multimedia Signal Processing","volume":"2018 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE 7th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2005.248592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Scale estimation is important in image and vision computing. We propose in this paper an invariant salient region selection and scale normalization method which is robust to rotation, scaling, translation and cropping. This new method is based on the first and second order invariant geometric moments calculated from an intensity difference map. The first-order moments are used to obtain invariant circular regions for different scale hypotheses, while a second-order moment is chosen as region descriptor to select the most salient scale. The image is normalized by scale of the selected salient region. Experiments demonstrate effectiveness of this method
图像的不变显著区选择与尺度归一化
尺度估计在图像和视觉计算中具有重要意义。本文提出了一种对旋转、缩放、平移和裁剪具有鲁棒性的不变显著区域选择和尺度归一化方法。该方法基于从强度差图中计算出的一阶和二阶不变几何矩。一阶矩用于得到不同尺度假设的不变圆区域,而二阶矩作为区域描述符用于选择最显著的尺度。通过所选显著区域的尺度对图像进行归一化。实验证明了该方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信