Text Detection in Arabic News Video Based on SWT Operator and Convolutional Auto-Encoders

Oussama Zayene, Mathias Seuret, Sameh Masmoudi Touj, J. Hennebert, R. Ingold, N. Amara
{"title":"Text Detection in Arabic News Video Based on SWT Operator and Convolutional Auto-Encoders","authors":"Oussama Zayene, Mathias Seuret, Sameh Masmoudi Touj, J. Hennebert, R. Ingold, N. Amara","doi":"10.1109/DAS.2016.80","DOIUrl":null,"url":null,"abstract":"Text detection in videos is a challenging problem due to variety of text specificities, presence of complex background and anti-aliasing/compression artifacts. In this paper, we present an approach for horizontally aligned artificial text detection in Arabic news video. The novelty of this method revolves around the combination of two techniques: an adapted version of the Stroke Width Transform (SWT) algorithm and a convolutional auto-encoder (CAE). First, the SWT extracts text candidates' components. They are then filtered and grouped using geometric constraints and Stroke Width information. Second, the CAE is used as an unsupervised feature learning method to discriminate the obtained textline candidates as text or non-text. We assess the proposed approach on the public Arabic-Text-in-Video database (AcTiV-DB) using different evaluation protocols including data from several TV channels. Experiments indicate that the use of learned features significantly improves the text detection results.","PeriodicalId":197359,"journal":{"name":"2016 12th IAPR Workshop on Document Analysis Systems (DAS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th IAPR Workshop on Document Analysis Systems (DAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS.2016.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Text detection in videos is a challenging problem due to variety of text specificities, presence of complex background and anti-aliasing/compression artifacts. In this paper, we present an approach for horizontally aligned artificial text detection in Arabic news video. The novelty of this method revolves around the combination of two techniques: an adapted version of the Stroke Width Transform (SWT) algorithm and a convolutional auto-encoder (CAE). First, the SWT extracts text candidates' components. They are then filtered and grouped using geometric constraints and Stroke Width information. Second, the CAE is used as an unsupervised feature learning method to discriminate the obtained textline candidates as text or non-text. We assess the proposed approach on the public Arabic-Text-in-Video database (AcTiV-DB) using different evaluation protocols including data from several TV channels. Experiments indicate that the use of learned features significantly improves the text detection results.
基于SWT算子和卷积自编码器的阿拉伯语新闻视频文本检测
视频中的文本检测是一个具有挑战性的问题,由于各种文本的特殊性,复杂的背景和抗混叠/压缩伪影的存在。本文提出了一种阿拉伯语新闻视频中水平对齐的人工文本检测方法。这种方法的新颖之处在于结合了两种技术:一种改进型的笔画宽度变换(SWT)算法和一种卷积自编码器(CAE)。首先,SWT提取文本候选组件。然后使用几何约束和笔画宽度信息对它们进行过滤和分组。其次,将CAE作为一种无监督特征学习方法来区分获得的文本候选文本是文本还是非文本。我们使用不同的评估协议,包括来自几个电视频道的数据,在公共阿拉伯文本视频数据库(AcTiV-DB)上评估了所提出的方法。实验表明,使用学习到的特征显著提高了文本检测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信