{"title":"Research on Face Recognition Technology Fusion Deep Learning Under Different Light Intensity Changes","authors":"Yanqing Yang, Xing Song","doi":"10.1109/acait53529.2021.9731292","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of face recognition under different illumination intensities combined with deep learning algorithms, this research designed a new type of loss function, the I-center loss function. Use face image data set LFW with different light intensity to train and test LeNets++ deep learning network based on softmax, center, I-center loss function, and a variety of common image recognition networks. The calculation results show that although the LeNets++ deep learning network training requires much more data than other networks selected in the study, when the loss function is changed to I-center, the network has a significant improvement in the accuracy of face image recognition under different light intensities, reaching 99.65%. Therefore, experiments have proved that the use of an improved deep learning neural network based on the I-center loss function can improve the face recognition effect under different light intensities.","PeriodicalId":173633,"journal":{"name":"2021 5th Asian Conference on Artificial Intelligence Technology (ACAIT)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 5th Asian Conference on Artificial Intelligence Technology (ACAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/acait53529.2021.9731292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Aiming at the problem of face recognition under different illumination intensities combined with deep learning algorithms, this research designed a new type of loss function, the I-center loss function. Use face image data set LFW with different light intensity to train and test LeNets++ deep learning network based on softmax, center, I-center loss function, and a variety of common image recognition networks. The calculation results show that although the LeNets++ deep learning network training requires much more data than other networks selected in the study, when the loss function is changed to I-center, the network has a significant improvement in the accuracy of face image recognition under different light intensities, reaching 99.65%. Therefore, experiments have proved that the use of an improved deep learning neural network based on the I-center loss function can improve the face recognition effect under different light intensities.