Performance Analysis of Machine Learning Algorithms for Big Data Classification: ML and AI-Based Algorithms for Big Data Analysis

S. Punia, Manoj Kumar, Thompson Stephan, G. Deverajan, Rizwan Patan
{"title":"Performance Analysis of Machine Learning Algorithms for Big Data Classification: ML and AI-Based Algorithms for Big Data Analysis","authors":"S. Punia, Manoj Kumar, Thompson Stephan, G. Deverajan, Rizwan Patan","doi":"10.4018/IJEHMC.20210701.OA4","DOIUrl":null,"url":null,"abstract":"In broad, three machine learning classification algorithms are used to discover correlations, hidden patterns, and other useful information from different data sets known as big data. Today, Twitter, Facebook, Instagram, and many other social media networks are used to collect the unstructured data. The conversion of unstructured data into structured data or meaningful information is a very tedious task. The different machine learning classification algorithms are used to convert unstructured data into structured data. In this paper, the authors first collect the unstructured research data from a frequently used social media network (i.e., Twitter) by using a Twitter application program interface (API) stream. Secondly, they implement different machine classification algorithms (supervised, unsupervised, and reinforcement) like decision trees (DT), neural networks (NN), support vector machines (SVM), naive Bayes (NB), linear regression (LR), and k-nearest neighbor (K-NN) from the collected research data set. The comparison of different machine learning classification algorithms is concluded.","PeriodicalId":375617,"journal":{"name":"Int. J. E Health Medical Commun.","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. E Health Medical Commun.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJEHMC.20210701.OA4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

In broad, three machine learning classification algorithms are used to discover correlations, hidden patterns, and other useful information from different data sets known as big data. Today, Twitter, Facebook, Instagram, and many other social media networks are used to collect the unstructured data. The conversion of unstructured data into structured data or meaningful information is a very tedious task. The different machine learning classification algorithms are used to convert unstructured data into structured data. In this paper, the authors first collect the unstructured research data from a frequently used social media network (i.e., Twitter) by using a Twitter application program interface (API) stream. Secondly, they implement different machine classification algorithms (supervised, unsupervised, and reinforcement) like decision trees (DT), neural networks (NN), support vector machines (SVM), naive Bayes (NB), linear regression (LR), and k-nearest neighbor (K-NN) from the collected research data set. The comparison of different machine learning classification algorithms is concluded.
大数据分类中机器学习算法的性能分析:大数据分析中基于ML和ai的算法
总的来说,三种机器学习分类算法被用来从不同的数据集中发现相关性、隐藏模式和其他有用的信息,这些数据集被称为大数据。今天,Twitter、Facebook、Instagram和许多其他社交媒体网络被用来收集非结构化数据。将非结构化数据转换为结构化数据或有意义的信息是一项非常繁琐的任务。不同的机器学习分类算法用于将非结构化数据转换为结构化数据。在本文中,作者首先使用Twitter应用程序接口(API)流从一个经常使用的社交媒体网络(即Twitter)中收集非结构化的研究数据。其次,他们从收集的研究数据集中实现不同的机器分类算法(监督、无监督和强化),如决策树(DT)、神经网络(NN)、支持向量机(SVM)、朴素贝叶斯(NB)、线性回归(LR)和k-近邻(K-NN)。对不同的机器学习分类算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信