Identification Model of Commodity False Reviews Based on Integrated Features

Jing Li
{"title":"Identification Model of Commodity False Reviews Based on Integrated Features","authors":"Jing Li","doi":"10.1109/ICVRIS.2018.00103","DOIUrl":null,"url":null,"abstract":"More and more consumers like online shopping, and false reviews of goods mislead consumers to some extent, so it is necessary to design a false review detection method. Based on the integration characteristics of consumer history reviews, this paper proposes an online false comment detection model. The model introduces time series and combines the static and dynamic features of the reviews to detect false comments. Finally, the model is used to test the comment data of three kinds of Amazon products. The results show that the model has high recognition accuracy.","PeriodicalId":152317,"journal":{"name":"2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRIS.2018.00103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

More and more consumers like online shopping, and false reviews of goods mislead consumers to some extent, so it is necessary to design a false review detection method. Based on the integration characteristics of consumer history reviews, this paper proposes an online false comment detection model. The model introduces time series and combines the static and dynamic features of the reviews to detect false comments. Finally, the model is used to test the comment data of three kinds of Amazon products. The results show that the model has high recognition accuracy.
基于集成特征的商品虚假评论识别模型
越来越多的消费者喜欢在网上购物,而商品的虚假评论在一定程度上误导了消费者,因此有必要设计一种虚假评论检测方法。基于消费者历史评论的集成特性,提出了一种在线虚假评论检测模型。该模型引入时间序列,结合评论的静态和动态特征来检测虚假评论。最后,利用该模型对亚马逊三种产品的评论数据进行了测试。结果表明,该模型具有较高的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信