{"title":"Entity-relationship queries over wikipedia","authors":"Xiaonan Li, Chengkai Li, Cong Yu","doi":"10.1145/1871985.1871991","DOIUrl":null,"url":null,"abstract":"Wikipedia is the largest user-generated knowledge base. We propose a structured query mechanism, entity-relationship query, for searching entities in Wikipedia corpus by their properties and inter-relationships. An entity-relationship query consists of arbitrary number of predicates on desired entities. The semantics of each predicate is specified with keywords. Entity-relationship query searches entities directly over text rather than pre-extracted structured data stores. This characteristic brings two benefits: (1) Query semantics can be intuitively expressed by keywords; (2) It avoids information loss that happens during extraction. We present a ranking framework for general entity-relationship queries and a position-based Bounded Cumulative Model for accurate ranking of query answers. Experiments on INEX benchmark queries and our own crafted queries show the effectiveness and accuracy of our ranking method.","PeriodicalId":244822,"journal":{"name":"SMUC '10","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SMUC '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1871985.1871991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
Wikipedia is the largest user-generated knowledge base. We propose a structured query mechanism, entity-relationship query, for searching entities in Wikipedia corpus by their properties and inter-relationships. An entity-relationship query consists of arbitrary number of predicates on desired entities. The semantics of each predicate is specified with keywords. Entity-relationship query searches entities directly over text rather than pre-extracted structured data stores. This characteristic brings two benefits: (1) Query semantics can be intuitively expressed by keywords; (2) It avoids information loss that happens during extraction. We present a ranking framework for general entity-relationship queries and a position-based Bounded Cumulative Model for accurate ranking of query answers. Experiments on INEX benchmark queries and our own crafted queries show the effectiveness and accuracy of our ranking method.