An enhanced EMD algorithm for ECG signal processing

Foteini Agrafioti, D. Hatzinakos
{"title":"An enhanced EMD algorithm for ECG signal processing","authors":"Foteini Agrafioti, D. Hatzinakos","doi":"10.1109/ICDSP.2011.6004922","DOIUrl":null,"url":null,"abstract":"The Empirical Mode Decomposition (EMD) is becoming increasingly popular for the multi-scale analysis of signals. However, the data-driven and adaptive nature of the EMD raises concerns regarding the uniqueness of the decomposition as well as the extend to which oscillatory modes can be mixed across different IMFs. This paper proposes a solution to this problem for the analysis of ECG signals. The bivariate extension of the decomposition (BEMD) is used as the basis of an analysis in which a synthetic ECG signal of idealized waveform guides the decomposition of an input ECG segment. Essentially, this work provides the necessary ground for the deployment of signal processing algorithms on the ECG signal using a more robust EMD analysis.","PeriodicalId":360702,"journal":{"name":"2011 17th International Conference on Digital Signal Processing (DSP)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 17th International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2011.6004922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The Empirical Mode Decomposition (EMD) is becoming increasingly popular for the multi-scale analysis of signals. However, the data-driven and adaptive nature of the EMD raises concerns regarding the uniqueness of the decomposition as well as the extend to which oscillatory modes can be mixed across different IMFs. This paper proposes a solution to this problem for the analysis of ECG signals. The bivariate extension of the decomposition (BEMD) is used as the basis of an analysis in which a synthetic ECG signal of idealized waveform guides the decomposition of an input ECG segment. Essentially, this work provides the necessary ground for the deployment of signal processing algorithms on the ECG signal using a more robust EMD analysis.
一种用于心电信号处理的增强EMD算法
经验模态分解(EMD)在信号的多尺度分析中越来越受欢迎。然而,EMD的数据驱动和自适应性质引起了对分解的独特性以及振荡模式可以在不同imf中混合的扩展的关注。本文针对这一问题提出了一种心电信号分析的解决方案。将分解的二元扩展(BEMD)作为分析的基础,在该分析中,一个理想波形的合成心电信号引导输入心电段的分解。从本质上讲,这项工作为使用更鲁棒的EMD分析在心电信号上部署信号处理算法提供了必要的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信