{"title":"Sampling Frequency and Digital Noise Filtering for Transient Kinetic Study in CSTR via Temperature Scanning and Composition Modulation Technique","authors":"A. Kaewchada, Kwanhatai Jiradechkhajorn, A. Jaree","doi":"10.14416/j.ijast.2015.10.002","DOIUrl":null,"url":null,"abstract":"Temperature Scanning and Composition Modulation technique (TS-CM) is a technique for estimating reaction parameters under transient conditions in a CSTR reactor. Studies of reaction kinetics performed under transient conditions can lead to savings of time and resources as compared to the conventional steady-state method. This is because a collection of data necessary for extracting the reaction kinetics can be obtained within a single experiment. This research focused on the refinement of TS-CM technique as an efficient tool for reaction kinetics studies. The alkaline hydrolysis of ethyl acetate was used as a model reaction. Different degrees of noise intensity were added to the output signal of NaOH concentration in order to study the effect of noise (0.5, 1.0, 3.0 and 5.0%) and sampling period (1, 30 and 60 seconds) on the accuracy of reaction kinetics. Results revealed that the sampling period of 1 second yielded only slight errors of kinetic parameters compared to that of without noise . The second part dealt with noise filtering. In order to smooth the NaOH concentration data, TS-CM technique was applied with three digital filters: a) the first-order filter or first-order filter, b) the second-order filter or second-order filter and c) the Savitzky-Golay filter. Results showed that the best filter was the Savitzky-Golay, which filtered with 81 points of window size and 2 nd order of polynomial degree.","PeriodicalId":352801,"journal":{"name":"King Mongkut’s University of Technology North Bangkok International Journal of Applied Science and Technology","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"King Mongkut’s University of Technology North Bangkok International Journal of Applied Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14416/j.ijast.2015.10.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Temperature Scanning and Composition Modulation technique (TS-CM) is a technique for estimating reaction parameters under transient conditions in a CSTR reactor. Studies of reaction kinetics performed under transient conditions can lead to savings of time and resources as compared to the conventional steady-state method. This is because a collection of data necessary for extracting the reaction kinetics can be obtained within a single experiment. This research focused on the refinement of TS-CM technique as an efficient tool for reaction kinetics studies. The alkaline hydrolysis of ethyl acetate was used as a model reaction. Different degrees of noise intensity were added to the output signal of NaOH concentration in order to study the effect of noise (0.5, 1.0, 3.0 and 5.0%) and sampling period (1, 30 and 60 seconds) on the accuracy of reaction kinetics. Results revealed that the sampling period of 1 second yielded only slight errors of kinetic parameters compared to that of without noise . The second part dealt with noise filtering. In order to smooth the NaOH concentration data, TS-CM technique was applied with three digital filters: a) the first-order filter or first-order filter, b) the second-order filter or second-order filter and c) the Savitzky-Golay filter. Results showed that the best filter was the Savitzky-Golay, which filtered with 81 points of window size and 2 nd order of polynomial degree.