On signal detection using support vector machines

A. Burian, J. Takala
{"title":"On signal detection using support vector machines","authors":"A. Burian, J. Takala","doi":"10.1109/SCS.2003.1227126","DOIUrl":null,"url":null,"abstract":"The detection type problems represent a special case of nonlinear mapping. This fact makes the use of neural networks attractive for signal detection problems. In order to obtain good generalization excessive tuning is needed. Also, most of the neural network learning theories does not make use of the optimal hyperplane concept. In this paper, we consider optimal hyperplane signal detection with support vector machines (SVMs), for detecting a known signal corrupted by noise. Experimental results illustrate the detection performances in various cases. The practical implementation and the robustness of SVMs are also considered.","PeriodicalId":375963,"journal":{"name":"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCS.2003.1227126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The detection type problems represent a special case of nonlinear mapping. This fact makes the use of neural networks attractive for signal detection problems. In order to obtain good generalization excessive tuning is needed. Also, most of the neural network learning theories does not make use of the optimal hyperplane concept. In this paper, we consider optimal hyperplane signal detection with support vector machines (SVMs), for detecting a known signal corrupted by noise. Experimental results illustrate the detection performances in various cases. The practical implementation and the robustness of SVMs are also considered.
基于支持向量机的信号检测
检测型问题是非线性映射的一种特殊情况。这一事实使得神经网络在信号检测问题上的应用具有吸引力。为了获得良好的泛化效果,需要进行过多的调谐。此外,大多数神经网络学习理论并没有利用最优超平面的概念。在本文中,我们考虑最优的超平面信号检测与支持向量机(svm),以检测已知的信号损坏的噪声。实验结果验证了该方法在不同情况下的检测性能。本文还考虑了支持向量机的实际实现和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信