An analysis of the switching behavior of GaN-HEMTs

Michael Ebli, M. Pfost
{"title":"An analysis of the switching behavior of GaN-HEMTs","authors":"Michael Ebli, M. Pfost","doi":"10.1109/ISSCS.2017.8034939","DOIUrl":null,"url":null,"abstract":"Gallium nitride high electron mobility transistors (GaN-HEMTs) have low capacitances and can achieve low switching losses in applications where hard turn-on is required. Low switching losses imply a fast switching; consequently, fast voltage and current transients occur. However, these transients can be limited by package and layout parasitics even for highly optimized systems. Furthermore, a fast switching requires a fast charging of the input capacitance, hence a high gate current. In this paper, the switching speed limitations of GaN-HEMTs due to the common source inductance and the gate driver supply voltage are discussed. The turn-on behavior of a GaN-HEMT is simulated and the impact of the parasitics and the gate driver supply voltage on the switching losses is described in detail. Furthermore, measurements are performed with an optimized layout for a drain-source voltage of 500V and a drain-source current up to 60 A.","PeriodicalId":338255,"journal":{"name":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCS.2017.8034939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Gallium nitride high electron mobility transistors (GaN-HEMTs) have low capacitances and can achieve low switching losses in applications where hard turn-on is required. Low switching losses imply a fast switching; consequently, fast voltage and current transients occur. However, these transients can be limited by package and layout parasitics even for highly optimized systems. Furthermore, a fast switching requires a fast charging of the input capacitance, hence a high gate current. In this paper, the switching speed limitations of GaN-HEMTs due to the common source inductance and the gate driver supply voltage are discussed. The turn-on behavior of a GaN-HEMT is simulated and the impact of the parasitics and the gate driver supply voltage on the switching losses is described in detail. Furthermore, measurements are performed with an optimized layout for a drain-source voltage of 500V and a drain-source current up to 60 A.
gan - hemt的开关行为分析
氮化镓高电子迁移率晶体管(gan - hemt)具有低电容,在需要硬导通的应用中可以实现低开关损耗。低开关损耗意味着快速开关;因此,快速电压和电流瞬变发生。然而,即使对于高度优化的系统,这些瞬态也可能受到封装和布局寄生的限制。此外,快速开关需要输入电容的快速充电,因此具有高栅极电流。本文讨论了gan - hemt的共源电感和栅极驱动电源电压对开关速度的限制。模拟了GaN-HEMT的导通行为,详细描述了寄生效应和栅极驱动电源电压对开关损耗的影响。此外,在漏源电压为500V,漏源电流为60a的优化布局下进行了测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信