On the modeling of network traffic and fast simulation of rare events using /spl alpha/-stable self-similar processes

A. Karasaridis, D. Hatzinakos
{"title":"On the modeling of network traffic and fast simulation of rare events using /spl alpha/-stable self-similar processes","authors":"A. Karasaridis, D. Hatzinakos","doi":"10.1109/HOST.1997.613529","DOIUrl":null,"url":null,"abstract":"We present a new model for aggregated network traffic based on /spl alpha/-stable self-similar processes which captures the burstiness and the long range dependence of the data. We show how the fractional Gaussian noise assumption fails and why our proposed model fits well by comparing real and synthesized network traffic. In addition, we show that we can speed up the simulation times for estimation of rare event probabilities, such as cell losses in ATM switches, by up to three orders of magnitude using /spl alpha/-stable modeling and importance sampling.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We present a new model for aggregated network traffic based on /spl alpha/-stable self-similar processes which captures the burstiness and the long range dependence of the data. We show how the fractional Gaussian noise assumption fails and why our proposed model fits well by comparing real and synthesized network traffic. In addition, we show that we can speed up the simulation times for estimation of rare event probabilities, such as cell losses in ATM switches, by up to three orders of magnitude using /spl alpha/-stable modeling and importance sampling.
基于/spl alpha/-稳定自相似过程的网络流量建模与罕见事件快速仿真
本文提出了一种基于/spl α -稳定自相似过程的网络流量聚合模型,该模型捕捉了数据的突发性和长期依赖性。通过比较真实和合成的网络流量,我们展示了分数高斯噪声假设是如何失败的,以及为什么我们提出的模型很适合。此外,我们表明,我们可以使用/spl alpha/-stable建模和重要性采样将罕见事件概率(如ATM交换机中的单元损失)的估计模拟时间加快三个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信