Spiking Central Pattern Generators through Reverse Engineering of Locomotion Patterns

Andrés Espinal, M. Sotelo-Figueroa, H. J. Estrada-García, M. Ornelas-Rodríguez, H. Rostro-González
{"title":"Spiking Central Pattern Generators through Reverse Engineering of Locomotion Patterns","authors":"Andrés Espinal, M. Sotelo-Figueroa, H. J. Estrada-García, M. Ornelas-Rodríguez, H. Rostro-González","doi":"10.5772/INTECHOPEN.72348","DOIUrl":null,"url":null,"abstract":"In robotics, there have been proposed methods for locomotion of nonwheeled robots based on artificial neural networks; those built with plausible neurons are called spiking central pattern generators (SCPGs). In this chapter, we present a generalization of reported deterministic and stochastic reverse engineering methods for automatically designing SCPG for legged robots locomotion systems; such methods create a spiking neural network capable of endogenously and periodically replicating one or several rhythmic signal sets, when a spiking neuron model and one or more locomotion gaits are given as inputs. Designed SCPGs have been implemented in different robotic controllers for a variety of robotic platforms. Finally, some aspects to improve and/or complement these SCPG-based locomotion systems are pointed out.","PeriodicalId":333803,"journal":{"name":"Cognitive and Computational Neuroscience - Principles, Algorithms and Applications","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive and Computational Neuroscience - Principles, Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.72348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In robotics, there have been proposed methods for locomotion of nonwheeled robots based on artificial neural networks; those built with plausible neurons are called spiking central pattern generators (SCPGs). In this chapter, we present a generalization of reported deterministic and stochastic reverse engineering methods for automatically designing SCPG for legged robots locomotion systems; such methods create a spiking neural network capable of endogenously and periodically replicating one or several rhythmic signal sets, when a spiking neuron model and one or more locomotion gaits are given as inputs. Designed SCPGs have been implemented in different robotic controllers for a variety of robotic platforms. Finally, some aspects to improve and/or complement these SCPG-based locomotion systems are pointed out.
通过运动模式逆向工程的峰值中心模式发生器
在机器人技术中,已经提出了基于人工神经网络的非轮式机器人运动方法;那些具有可信神经元的神经元被称为尖波中枢模式发生器(scpg)。在本章中,我们介绍了已报道的用于自动设计腿式机器人运动系统的SCPG的确定性和随机逆向工程方法的概括;当一个脉冲神经元模型和一个或多个运动步态作为输入时,这种方法创建了一个脉冲神经网络,能够内源性地周期性地复制一个或多个有节奏的信号集。设计的scpg已经在各种机器人平台的不同机器人控制器中实现。最后,指出了改进和/或补充这些基于scpg的运动系统的一些方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信