Wiring Diagnosis using Time Domain Reflectometry and Random Forest

M. Smail, Y. Sellami, H. Bouchekara, A. Boubezoul
{"title":"Wiring Diagnosis using Time Domain Reflectometry and Random Forest","authors":"M. Smail, Y. Sellami, H. Bouchekara, A. Boubezoul","doi":"10.1109/COMPUMAG45669.2019.9032819","DOIUrl":null,"url":null,"abstract":"In this paper a new wiring network diagnosis approach dedicated to embedded system based on Time Domain Reflectometry (TDR) response is proposed. The method is based on two complementary steps namely the forward and inverse models. The forward model is used to generate the TDR response using RLCG circuit model and Finite-Difference Time-Domaine (FDTD) method, and to create the datasets. The inverse model allows to detect, localize and characterize the faults from the time response of the faulty network by using Random Forest (RF) technique. Two types of RF models have been used in the diagnosis procedure: RF classifiers and RF regression models. Numerical and experimental investigations have been performed in order to test the performances and the feasibility of the proposed approach.","PeriodicalId":317315,"journal":{"name":"2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPUMAG45669.2019.9032819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper a new wiring network diagnosis approach dedicated to embedded system based on Time Domain Reflectometry (TDR) response is proposed. The method is based on two complementary steps namely the forward and inverse models. The forward model is used to generate the TDR response using RLCG circuit model and Finite-Difference Time-Domaine (FDTD) method, and to create the datasets. The inverse model allows to detect, localize and characterize the faults from the time response of the faulty network by using Random Forest (RF) technique. Two types of RF models have been used in the diagnosis procedure: RF classifiers and RF regression models. Numerical and experimental investigations have been performed in order to test the performances and the feasibility of the proposed approach.
利用时域反射法和随机森林进行布线诊断
提出了一种基于时域反射(TDR)响应的嵌入式系统布线网络诊断方法。该方法基于两个互补的步骤,即正演和逆演模型。正演模型利用RLCG电路模型和时域有限差分(FDTD)方法生成TDR响应,并生成数据集。该逆模型可以利用随机森林技术从故障网络的时间响应中检测、定位和表征故障。在诊断过程中使用了两种类型的射频模型:射频分类器和射频回归模型。为了验证该方法的性能和可行性,进行了数值和实验研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信