A Monte Carlo Method for Image Classification Using SVM

E. Atanassov, A. Karaivanova, S. Ivanovska, M. Durchova
{"title":"A Monte Carlo Method for Image Classification Using SVM","authors":"E. Atanassov, A. Karaivanova, S. Ivanovska, M. Durchova","doi":"10.55630/dipp.2021.11.20","DOIUrl":null,"url":null,"abstract":"Support Vector Machines are a widely used tool in Machine Learning.\nThey have some important advantages with regards to the more popular Deep\nNeural Networks. For the problem of image classification, multiple SVMs may be used and the issue of finding the best hyperparameters adds additional complexity and increases the overall computational time required. Our goal is to develop and study Monte Carlo algorithms that allow faster discovery of good hyperparameters and training of the SVMs, without impacting negatively the final accuracy of the models. We also employ GPUs and parallel computing in order to achieve good utilisation of the capabilities of the available hardware. In this paper we describe our methods, provide implementation details and show numerical results, achieved on the publicly available Architectural Heritage Elements image Dataset.","PeriodicalId":268414,"journal":{"name":"Digital Presentation and Preservation of Cultural and Scientific Heritage","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Presentation and Preservation of Cultural and Scientific Heritage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55630/dipp.2021.11.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Support Vector Machines are a widely used tool in Machine Learning. They have some important advantages with regards to the more popular Deep Neural Networks. For the problem of image classification, multiple SVMs may be used and the issue of finding the best hyperparameters adds additional complexity and increases the overall computational time required. Our goal is to develop and study Monte Carlo algorithms that allow faster discovery of good hyperparameters and training of the SVMs, without impacting negatively the final accuracy of the models. We also employ GPUs and parallel computing in order to achieve good utilisation of the capabilities of the available hardware. In this paper we describe our methods, provide implementation details and show numerical results, achieved on the publicly available Architectural Heritage Elements image Dataset.
基于支持向量机的蒙特卡罗图像分类方法
支持向量机是机器学习中广泛使用的工具。与更流行的深度神经网络相比,它们有一些重要的优势。对于图像分类问题,可能会使用多个支持向量机,寻找最佳超参数的问题增加了额外的复杂性,并增加了所需的总体计算时间。我们的目标是开发和研究蒙特卡罗算法,该算法允许更快地发现良好的超参数和训练支持向量机,而不会对模型的最终准确性产生负面影响。我们还采用gpu和并行计算,以实现对可用硬件功能的良好利用。在本文中,我们描述了我们的方法,提供了实现细节,并展示了在公开可用的建筑遗产元素图像数据集上实现的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信