{"title":"An Optimal Semi-Partitioned Scheduler Assuming Arbitrary Affinity Masks","authors":"S. Voronov, James H. Anderson","doi":"10.1109/RTSS.2018.00055","DOIUrl":null,"url":null,"abstract":"Modern operating systems allow task migrations to be restricted by specifying per-task processor affinity masks. Such a mask specifies the set of processor cores upon which a task can be scheduled. In this paper, a semi-partitioned scheduler, AM-Red (affinity mask reduction), is presented for scheduling implicit-deadline sporadic tasks with arbitrary affinity masks on an identical multiprocessor. AM-Red is obtained by applying an affinity-mask-reduction method that produces affinities in accordance with those specified, without compromising feasibility, but with only a linear number of migrating tasks. It functions by employing a tunable frame of size |F|. For any choice of |F|, AM-Red is soft-real-time optimal, with tardiness bounded by |F|, but the frequency of task migrations is proportional to |F|. If |F| divides all task periods, then AM-Red is also hard-real-time-optimal (tardiness is zero). AM-Red is the first optimal scheduler proposed for arbitrary affinity masks without future knowledge of all job releases. Experiments are presented that show that AM-Red is implementable with low overhead and yields reasonable tardiness and task-migration frequency.","PeriodicalId":294784,"journal":{"name":"2018 IEEE Real-Time Systems Symposium (RTSS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Real-Time Systems Symposium (RTSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2018.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Modern operating systems allow task migrations to be restricted by specifying per-task processor affinity masks. Such a mask specifies the set of processor cores upon which a task can be scheduled. In this paper, a semi-partitioned scheduler, AM-Red (affinity mask reduction), is presented for scheduling implicit-deadline sporadic tasks with arbitrary affinity masks on an identical multiprocessor. AM-Red is obtained by applying an affinity-mask-reduction method that produces affinities in accordance with those specified, without compromising feasibility, but with only a linear number of migrating tasks. It functions by employing a tunable frame of size |F|. For any choice of |F|, AM-Red is soft-real-time optimal, with tardiness bounded by |F|, but the frequency of task migrations is proportional to |F|. If |F| divides all task periods, then AM-Red is also hard-real-time-optimal (tardiness is zero). AM-Red is the first optimal scheduler proposed for arbitrary affinity masks without future knowledge of all job releases. Experiments are presented that show that AM-Red is implementable with low overhead and yields reasonable tardiness and task-migration frequency.