Regular operator sampling for parallelograms

G. Pfander, D. Walnut
{"title":"Regular operator sampling for parallelograms","authors":"G. Pfander, D. Walnut","doi":"10.1109/SAMPTA.2015.7148847","DOIUrl":null,"url":null,"abstract":"Operator sampling considers the question of when operators of a given class can be distinguished by their action on a single probing signal. The fundamental result in this theory shows that the answer depends on the area of the support S of the so-called spreading function of the operator (i.e., the symplectic Fourier transform of its Kohn-Nirenberg symbol). |S| <; 1 then identification is possible and when |S| > 1 it is impossible. In the critical case when |S| = 1, the picture is less clear. In this paper we characterize when regular operator sampling (that is, when the probing signal is a periodically-weighted delta train) is possible when S is a parallelogram of area 1.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Operator sampling considers the question of when operators of a given class can be distinguished by their action on a single probing signal. The fundamental result in this theory shows that the answer depends on the area of the support S of the so-called spreading function of the operator (i.e., the symplectic Fourier transform of its Kohn-Nirenberg symbol). |S| <; 1 then identification is possible and when |S| > 1 it is impossible. In the critical case when |S| = 1, the picture is less clear. In this paper we characterize when regular operator sampling (that is, when the probing signal is a periodically-weighted delta train) is possible when S is a parallelogram of area 1.
平行四边形的正则算子抽样
算子采样考虑的问题是,给定的一类算子何时可以通过它们在单个探测信号上的动作来区分。该理论的基本结果表明,答案取决于所谓的算子扩展函数(即其Kohn-Nirenberg符号的辛傅里叶变换)的支持S的面积。这是不可能的。在危急情况下,当|S| = 1时,画面就不那么清晰了。在本文中,我们刻画了当S是面积为1的平行四边形时,正则算子采样(即当探测信号是周期性加权的δ序列时)是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信