Attention-Augmented Convolutional Autoencoder for Radar-Based Human Activity Recognition

Christopher Campbell, F. Ahmad
{"title":"Attention-Augmented Convolutional Autoencoder for Radar-Based Human Activity Recognition","authors":"Christopher Campbell, F. Ahmad","doi":"10.1109/RADAR42522.2020.9114787","DOIUrl":null,"url":null,"abstract":"We propose an attention-augmented convolutional autoencoder for human activity recognition using radar micro-Doppler signatures. We use attention to overcome the limited receptive field of convolutional autoencoders (CAE), thereby enabling them to learn global information in addition to spatially localized features, while preserving their unsupervised pretraining characteristic. The augmentation is accomplished by concatenating convolutional local-feature maps with a set of attention feature maps that capture global dependencies. Using real data measurements of falls and activities of daily living, we demonstrate that the incorporation of the attention mechanism yields superior classification accuracy with respect to training sample size, compared to the conventional CAE.","PeriodicalId":125006,"journal":{"name":"2020 IEEE International Radar Conference (RADAR)","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Radar Conference (RADAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR42522.2020.9114787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We propose an attention-augmented convolutional autoencoder for human activity recognition using radar micro-Doppler signatures. We use attention to overcome the limited receptive field of convolutional autoencoders (CAE), thereby enabling them to learn global information in addition to spatially localized features, while preserving their unsupervised pretraining characteristic. The augmentation is accomplished by concatenating convolutional local-feature maps with a set of attention feature maps that capture global dependencies. Using real data measurements of falls and activities of daily living, we demonstrate that the incorporation of the attention mechanism yields superior classification accuracy with respect to training sample size, compared to the conventional CAE.
基于雷达的人体活动识别的注意增强卷积自编码器
我们提出了一种使用雷达微多普勒特征进行人类活动识别的注意力增强卷积自编码器。我们使用注意力来克服卷积自编码器(CAE)有限的接受域,从而使它们除了学习空间局部特征外,还能学习全局信息,同时保留其无监督预训练特征。增强是通过将卷积局部特征映射与一组捕获全局依赖关系的注意力特征映射连接起来完成的。使用跌倒和日常生活活动的真实数据测量,我们证明了与传统CAE相比,与训练样本量相比,注意机制的结合产生了更高的分类准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信