Power and performance characterization, analysis and tuning for energy-efficient edge detection on atom and ARM based platforms

P. Otto, Maria Malik, N. Akhlaghi, Rebel Sequeira, H. Homayoun, S. Sikdar
{"title":"Power and performance characterization, analysis and tuning for energy-efficient edge detection on atom and ARM based platforms","authors":"P. Otto, Maria Malik, N. Akhlaghi, Rebel Sequeira, H. Homayoun, S. Sikdar","doi":"10.1109/ICCD.2015.7357153","DOIUrl":null,"url":null,"abstract":"The de facto standard for embedded platforms with medium to low computing demands are ARM with Thumb ISA and Intel Atom with the X86 ISA with multiple cores. Operating these architectures in the milliwatts range while running realtime computer vision corner detection algorithms is a challenging problem. We present the analysis of power, performance and energy-efficiency measurements of Harris corner detection across a wide range of voltage and frequency settings, multicore/multithreading strategies, and compiler and application optimization parameters to find how the interplay of these parameters affect the power, performance and energy-efficiency. Our measurement of results on state-of-the-art embedded platforms demonstrate that a systematic cross-layer optimization at the application level (Sobel filter type, aperture size, number of image tiles), compiler level (branch prediction, function inlining) and system level (voltage and frequency setting, single core vs multicore implementation) significantly improves the energy-efficiency of corner detection, while meeting its real-time performance constraints. This cross-layer optimization improves the energy-efficiency of Harris corner on Atom and ARM by 89.5% and 87.2%, respectively.","PeriodicalId":129506,"journal":{"name":"2015 33rd IEEE International Conference on Computer Design (ICCD)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 33rd IEEE International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2015.7357153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The de facto standard for embedded platforms with medium to low computing demands are ARM with Thumb ISA and Intel Atom with the X86 ISA with multiple cores. Operating these architectures in the milliwatts range while running realtime computer vision corner detection algorithms is a challenging problem. We present the analysis of power, performance and energy-efficiency measurements of Harris corner detection across a wide range of voltage and frequency settings, multicore/multithreading strategies, and compiler and application optimization parameters to find how the interplay of these parameters affect the power, performance and energy-efficiency. Our measurement of results on state-of-the-art embedded platforms demonstrate that a systematic cross-layer optimization at the application level (Sobel filter type, aperture size, number of image tiles), compiler level (branch prediction, function inlining) and system level (voltage and frequency setting, single core vs multicore implementation) significantly improves the energy-efficiency of corner detection, while meeting its real-time performance constraints. This cross-layer optimization improves the energy-efficiency of Harris corner on Atom and ARM by 89.5% and 87.2%, respectively.
基于原子和ARM平台的节能边缘检测的功率和性能表征,分析和调优
具有中低计算需求的嵌入式平台的实际标准是带有Thumb ISA的ARM和带有多核X86 ISA的Intel Atom。在毫瓦范围内运行这些架构,同时运行实时计算机视觉角点检测算法是一个具有挑战性的问题。我们分析了Harris角点检测在各种电压和频率设置、多核/多线程策略、编译器和应用程序优化参数下的功耗、性能和能效测量结果,以发现这些参数如何相互作用影响功耗、性能和能效。我们在最先进的嵌入式平台上的测量结果表明,在应用层(Sobel滤波器类型、孔径大小、图像块数量)、编译器层(分支预测、函数内联)和系统层(电压和频率设置、单核与多核实现)进行系统跨层优化,显著提高了角点检测的能效,同时满足其实时性能限制。这种跨层优化使Harris拐角在Atom和ARM上的能效分别提高了89.5%和87.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信