Wave propagation with HBC in a human arm model

Doaa Ahmed, J. Kirchner, G. Fischer
{"title":"Wave propagation with HBC in a human arm model","authors":"Doaa Ahmed, J. Kirchner, G. Fischer","doi":"10.1109/MeMeA.2017.7985918","DOIUrl":null,"url":null,"abstract":"Today's interest in health assistance systems, sport activities, person's vital signs observing and remote patient monitoring require distributing various types of sensors at specific places across the human body. These sensors might be used to measure temperature, blood pressure level, blood glucose level and the like. This implies collecting the data generated at the distributed sensors in a wireless Body Area Network (BAN) and fusing these data at an access point (e.g. wristwatch) and then to a central processing unit (i.e., PC) for diagnosing, as shown in Fig. 1. However, sending data wirelessly is typically a very energy intensive task implying large batteries. Hence, BAN networks have been developed by IEEE 802.15.Task Group (TG6) to serve a variety of applications including medical, consumer lifestyle and the like at a low power consumption. Human Body Communications (HBC) is one technique used in BAN networks that utilizes the human body as a transmission medium to transfer data between sensors on, in or at the proximity of the human body using electrodes (i.e., electrical conductors).","PeriodicalId":235051,"journal":{"name":"2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA.2017.7985918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Today's interest in health assistance systems, sport activities, person's vital signs observing and remote patient monitoring require distributing various types of sensors at specific places across the human body. These sensors might be used to measure temperature, blood pressure level, blood glucose level and the like. This implies collecting the data generated at the distributed sensors in a wireless Body Area Network (BAN) and fusing these data at an access point (e.g. wristwatch) and then to a central processing unit (i.e., PC) for diagnosing, as shown in Fig. 1. However, sending data wirelessly is typically a very energy intensive task implying large batteries. Hence, BAN networks have been developed by IEEE 802.15.Task Group (TG6) to serve a variety of applications including medical, consumer lifestyle and the like at a low power consumption. Human Body Communications (HBC) is one technique used in BAN networks that utilizes the human body as a transmission medium to transfer data between sensors on, in or at the proximity of the human body using electrodes (i.e., electrical conductors).
HBC在人体手臂模型中的波传播
如今,人们对健康援助系统、体育活动、人的生命体征观察和远程病人监测的兴趣要求在人体的特定部位分布各种类型的传感器。这些传感器可以用来测量温度、血压水平、血糖水平等。这意味着收集无线体域网络(BAN)中分布式传感器产生的数据,并在接入点(例如手表)融合这些数据,然后将这些数据融合到中央处理单元(即PC)进行诊断,如图1所示。然而,无线传输数据通常是一项非常耗能的任务,需要大量电池。因此,BAN网络已由IEEE 802.15开发。任务组(TG6)以低功耗服务于各种应用,包括医疗、消费生活方式等。人体通信(HBC)是BAN网络中使用的一种技术,它利用人体作为传输介质,使用电极(即电导体)在人体上、体内或附近的传感器之间传输数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信