Approximate Noise-Whitening in MIMO Detection via Banded-Inverse Extension

Sha Hu, Hao Wang
{"title":"Approximate Noise-Whitening in MIMO Detection via Banded-Inverse Extension","authors":"Sha Hu, Hao Wang","doi":"10.1109/VTC2022-Fall57202.2022.10012712","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel approximate noise-whitening for multi-input multi-output (MIMO) detection via banded-inverse extension (BIE). If a noise covariance matrix origins from a Gauss-Markov process (GMP), its inverse is banded and the proposal is exact and yields no accuracy-losses. For general matrices to be inverted, the approximation-errors from inversion introduce a mismatched MIMO detection-model, which can cause performance-degradation. Hence, we develop an information-theoretic tool with generalized mutual information (GMI) to evaluate the impacts from approximation-errors on the final achievable rate. We show that the approximate noise-whitening method based on BIE not only minimizes the noise-distortion measured from the Kullback-Leibler (KL) divergence, but also asymptotically maximizes GMI of the MIMO system as signal-to-noise ratio (SNR) increases. Besides, the proposal also provides a unified framework for approximate matrix-inverse with an adjustable band-size that can tune the trade-off between complexity and accuracy.","PeriodicalId":326047,"journal":{"name":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTC2022-Fall57202.2022.10012712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a novel approximate noise-whitening for multi-input multi-output (MIMO) detection via banded-inverse extension (BIE). If a noise covariance matrix origins from a Gauss-Markov process (GMP), its inverse is banded and the proposal is exact and yields no accuracy-losses. For general matrices to be inverted, the approximation-errors from inversion introduce a mismatched MIMO detection-model, which can cause performance-degradation. Hence, we develop an information-theoretic tool with generalized mutual information (GMI) to evaluate the impacts from approximation-errors on the final achievable rate. We show that the approximate noise-whitening method based on BIE not only minimizes the noise-distortion measured from the Kullback-Leibler (KL) divergence, but also asymptotically maximizes GMI of the MIMO system as signal-to-noise ratio (SNR) increases. Besides, the proposal also provides a unified framework for approximate matrix-inverse with an adjustable band-size that can tune the trade-off between complexity and accuracy.
基于带逆扩展的MIMO检测中的近似噪声白化
本文提出了一种基于带逆扩展(BIE)的多输入多输出(MIMO)检测近似噪声白化方法。如果噪声协方差矩阵起源于高斯-马尔可夫过程(GMP),则其逆是带状的,并且该建议是精确的,不会产生精度损失。对于一般矩阵的反演,反演的近似误差会引入不匹配的MIMO检测模型,从而导致性能下降。因此,我们开发了一个具有广义互信息(GMI)的信息理论工具来评估近似误差对最终可实现率的影响。研究表明,基于BIE的近似噪声白化方法不仅可以使Kullback-Leibler (KL)散度测量的噪声失真最小化,而且可以随着信噪比(SNR)的增加而使MIMO系统的GMI渐近最大化。此外,该方案还提供了一个统一的近似矩阵反演框架,该框架具有可调节的频带大小,可以在复杂性和精度之间进行权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信