Z. Haddad, E. Peral, S. Tanelli, O. Sy, G. Stephens
{"title":"RaInCube: a proposed constellation of atmospheric profiling radars in cubesat","authors":"Z. Haddad, E. Peral, S. Tanelli, O. Sy, G. Stephens","doi":"10.1117/12.2228188","DOIUrl":null,"url":null,"abstract":"Numerical climate and weather models depend on measurements from space-borne satellites to complete model validation and improvements. Precipitation profiling capabilities are currently limited to a few instruments deployed in Low Earth Orbit (LEO), which cannot provide the temporal resolution necessary to observe the evo- lution of short time-scale weather phenomena and improve numerical weather prediction models. A constellation of cloud- and precipitation-profiling instruments in LEO would provide this essential capability, but the cost and timeframe of typical satellite platforms and instruments constitute a possibly prohibitive challenge. A new radar instrument architecture that is compatible with low-cost satellite platforms, such as CubeSats and SmallSats, has been designed at JPL. Its small size, moderate mass and low power requirement enable constellation missions, which will vastly expand our ability to observe weather systems and their dynamics and thermodynamics at sub-diurnal time scales down to the temporal resolutions required to observe developing convection. In turn, this expanded observational ability can revolutionize weather now-casting and medium-range forecasting, and enable crucial model improvements to improve climate predictions.","PeriodicalId":165733,"journal":{"name":"SPIE Asia-Pacific Remote Sensing","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Asia-Pacific Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2228188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Numerical climate and weather models depend on measurements from space-borne satellites to complete model validation and improvements. Precipitation profiling capabilities are currently limited to a few instruments deployed in Low Earth Orbit (LEO), which cannot provide the temporal resolution necessary to observe the evo- lution of short time-scale weather phenomena and improve numerical weather prediction models. A constellation of cloud- and precipitation-profiling instruments in LEO would provide this essential capability, but the cost and timeframe of typical satellite platforms and instruments constitute a possibly prohibitive challenge. A new radar instrument architecture that is compatible with low-cost satellite platforms, such as CubeSats and SmallSats, has been designed at JPL. Its small size, moderate mass and low power requirement enable constellation missions, which will vastly expand our ability to observe weather systems and their dynamics and thermodynamics at sub-diurnal time scales down to the temporal resolutions required to observe developing convection. In turn, this expanded observational ability can revolutionize weather now-casting and medium-range forecasting, and enable crucial model improvements to improve climate predictions.