Density estimate from below in relation to a conjecture of A. Zygmund on Lipschitz differentiation

T. Pauw
{"title":"Density estimate from below in relation to a conjecture of A. Zygmund on Lipschitz differentiation","authors":"T. Pauw","doi":"10.5802/jep.211","DOIUrl":null,"url":null,"abstract":"Letting $A \\subset \\mathbb{R}^n$ be Borel measurable and $W_0 : A \\to \\mathbb{G}(n,m)$ Lipschitzian, we establish that \\begin{equation*} \\limsup_{r \\to 0^+} \\frac{\\mathcal{H}^m \\left[ A \\cap B(x,r) \\cap (x+ W_0(x))\\right]}{\\alpha(m)r^m} \\geq \\frac{1}{2^n}, \\end{equation*} for $\\mathcal{L}^n$-almost every $x \\in A$. In particular, it follows that $A$ is $\\mathcal{L}^n$-negligible if and only if $\\mathcal{H}^m(A \\cap (x+W_0(x))=0$, for $\\mathcal{L}^n$-almost every $x \\in A$.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Letting $A \subset \mathbb{R}^n$ be Borel measurable and $W_0 : A \to \mathbb{G}(n,m)$ Lipschitzian, we establish that \begin{equation*} \limsup_{r \to 0^+} \frac{\mathcal{H}^m \left[ A \cap B(x,r) \cap (x+ W_0(x))\right]}{\alpha(m)r^m} \geq \frac{1}{2^n}, \end{equation*} for $\mathcal{L}^n$-almost every $x \in A$. In particular, it follows that $A$ is $\mathcal{L}^n$-negligible if and only if $\mathcal{H}^m(A \cap (x+W_0(x))=0$, for $\mathcal{L}^n$-almost every $x \in A$.
从下面的密度估计与a . Zygmund关于Lipschitz微分的猜想有关
假设$A \subset \mathbb{R}^n$是Borel可测量的,并且$W_0 : A \to \mathbb{G}(n,m)$是Lipschitzian的,我们建立了\begin{equation*} \limsup_{r \to 0^+} \frac{\mathcal{H}^m \left[ A \cap B(x,r) \cap (x+ W_0(x))\right]}{\alpha(m)r^m} \geq \frac{1}{2^n}, \end{equation*}对于$\mathcal{L}^n$——几乎所有$x \in A$。特别地,可以得出结论:$A$等于$\mathcal{L}^n$——当且仅当$\mathcal{H}^m(A \cap (x+W_0(x))=0$对于$\mathcal{L}^n$几乎等于$x \in A$时可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信