{"title":"Density estimate from below in relation to a conjecture of A. Zygmund on Lipschitz differentiation","authors":"T. Pauw","doi":"10.5802/jep.211","DOIUrl":null,"url":null,"abstract":"Letting $A \\subset \\mathbb{R}^n$ be Borel measurable and $W_0 : A \\to \\mathbb{G}(n,m)$ Lipschitzian, we establish that \\begin{equation*} \\limsup_{r \\to 0^+} \\frac{\\mathcal{H}^m \\left[ A \\cap B(x,r) \\cap (x+ W_0(x))\\right]}{\\alpha(m)r^m} \\geq \\frac{1}{2^n}, \\end{equation*} for $\\mathcal{L}^n$-almost every $x \\in A$. In particular, it follows that $A$ is $\\mathcal{L}^n$-negligible if and only if $\\mathcal{H}^m(A \\cap (x+W_0(x))=0$, for $\\mathcal{L}^n$-almost every $x \\in A$.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Letting $A \subset \mathbb{R}^n$ be Borel measurable and $W_0 : A \to \mathbb{G}(n,m)$ Lipschitzian, we establish that \begin{equation*} \limsup_{r \to 0^+} \frac{\mathcal{H}^m \left[ A \cap B(x,r) \cap (x+ W_0(x))\right]}{\alpha(m)r^m} \geq \frac{1}{2^n}, \end{equation*} for $\mathcal{L}^n$-almost every $x \in A$. In particular, it follows that $A$ is $\mathcal{L}^n$-negligible if and only if $\mathcal{H}^m(A \cap (x+W_0(x))=0$, for $\mathcal{L}^n$-almost every $x \in A$.