A Fast Algorithm for the Numerical Evaluation of Conformal Mappings

S. O'Donnell, V. Rokhlin
{"title":"A Fast Algorithm for the Numerical Evaluation of Conformal Mappings","authors":"S. O'Donnell, V. Rokhlin","doi":"10.1137/0910031","DOIUrl":null,"url":null,"abstract":"An algorithm is presented for the construction of conformal mappings from arbitrary simply connected regions in the complex plane onto the unit disk. The algorithm is based on a combination of the Kerzman–Stein integral equation (see [Math. Anal, 236 (1978), pp. 85–93]) and the Fast Multipole Method for the evaluation of Cauchy-type integrals (see [V. Rokhlin, J. Comput. Phys., 60 (1985), pp. 187–207], [L. Greengard and V. Rokhlin, J. Comput. Phys., 73 (1987), pp. 325–348], [J. Carrier, L. Greengard, and V. Rokhlin, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 669–686], [L. F. Greengard, Ph.D. thesis, Department of Computer Science, Yale University, New Haven, CT, 1987]). Previously published methods for the construction of conformal mappings via the Kerzman–Stein equation have an asymptotic CPU time estimate of the order $O(n^2 )$, where n is the number of nodes in the discretization of the boundary of the region being mapped. The method presented here has an estimate of the order $O(n)$, making it an approach of choice in many situations. The performance of the algorithm is illustrated by several numerical examples.","PeriodicalId":200176,"journal":{"name":"Siam Journal on Scientific and Statistical Computing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam Journal on Scientific and Statistical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0910031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

Abstract

An algorithm is presented for the construction of conformal mappings from arbitrary simply connected regions in the complex plane onto the unit disk. The algorithm is based on a combination of the Kerzman–Stein integral equation (see [Math. Anal, 236 (1978), pp. 85–93]) and the Fast Multipole Method for the evaluation of Cauchy-type integrals (see [V. Rokhlin, J. Comput. Phys., 60 (1985), pp. 187–207], [L. Greengard and V. Rokhlin, J. Comput. Phys., 73 (1987), pp. 325–348], [J. Carrier, L. Greengard, and V. Rokhlin, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 669–686], [L. F. Greengard, Ph.D. thesis, Department of Computer Science, Yale University, New Haven, CT, 1987]). Previously published methods for the construction of conformal mappings via the Kerzman–Stein equation have an asymptotic CPU time estimate of the order $O(n^2 )$, where n is the number of nodes in the discretization of the boundary of the region being mapped. The method presented here has an estimate of the order $O(n)$, making it an approach of choice in many situations. The performance of the algorithm is illustrated by several numerical examples.
保角映射数值求值的快速算法
给出了复平面上任意单连通区域到单位圆盘的保角映射的构造算法。该算法基于Kerzman-Stein积分方程(参见[数学])的组合。数学学报,236 (1978),pp. 85-93])和求解cauchy型积分的快速多极方法(参见[V.]。J.罗克林。理论物理。, 60 (1985), pp. 187-207], [L]。格林加德和罗克林,J.康普特。理论物理。[J] .中国农业科学,2003(2),第3 - 4页。李,L.格林加德,V.罗克林,SIAM J. Sci。中央集权。第一版。, 9(1988),页669-686],[L]。F. Greengard,博士论文,耶鲁大学计算机科学系,纽黑文,CT, 1987])。先前发表的通过Kerzman-Stein方程构造保形映射的方法具有O(n^2)$阶的渐近CPU时间估计,其中n是被映射区域边界离散化中的节点数。本文提出的方法具有O(n)阶的估计,使其成为许多情况下的一种选择方法。通过数值算例说明了该算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信