{"title":"Fog Function Virtualization: A flexible solution for IoT applications","authors":"Damian Roca, J. Quiroga, M. Valero, M. Nemirovsky","doi":"10.1109/FMEC.2017.7946411","DOIUrl":null,"url":null,"abstract":"The Internet of Things applications must carefully assess certain crucial factors such as the real-time and largely distributed nature of the “things”. Fog Computing provides an architecture to satisfy those requirements through nodes located from near the “things” till the edge. The problem comes with the integration of the Fog nodes into current infrastructures. This process requires the development of complex software solutions and prevents Fog growth. In this paper we propose three innovations to enhance Fog: (i) a new orchestration policy, (ii) the creation of constellations of nodes, and (iii) Fog Function Virtualization (FFV). All together will complement Fog to reach its true potential as a generic scalable platform, running multiple IoT applications simultaneously. Deploying a new service is reduced to the development of the application code, fact that brings the democratization of the Fog Computing paradigm through ease of deployment and cost reduction.","PeriodicalId":426271,"journal":{"name":"2017 Second International Conference on Fog and Mobile Edge Computing (FMEC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Second International Conference on Fog and Mobile Edge Computing (FMEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMEC.2017.7946411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
The Internet of Things applications must carefully assess certain crucial factors such as the real-time and largely distributed nature of the “things”. Fog Computing provides an architecture to satisfy those requirements through nodes located from near the “things” till the edge. The problem comes with the integration of the Fog nodes into current infrastructures. This process requires the development of complex software solutions and prevents Fog growth. In this paper we propose three innovations to enhance Fog: (i) a new orchestration policy, (ii) the creation of constellations of nodes, and (iii) Fog Function Virtualization (FFV). All together will complement Fog to reach its true potential as a generic scalable platform, running multiple IoT applications simultaneously. Deploying a new service is reduced to the development of the application code, fact that brings the democratization of the Fog Computing paradigm through ease of deployment and cost reduction.