Generating Explainable Rule Sets from Tree-Ensemble Learning Methods by Answer Set Programming

A. Takemura, Katsumi Inoue
{"title":"Generating Explainable Rule Sets from Tree-Ensemble Learning Methods by Answer Set Programming","authors":"A. Takemura, Katsumi Inoue","doi":"10.4204/EPTCS.345.26","DOIUrl":null,"url":null,"abstract":"We propose a method for generating explainable rule sets from tree-ensemble learners using Answer Set Programming (ASP). To this end, we adopt a decompositional approach where the split structures of the base decision trees are exploited in the construction of rules, which in turn are assessed using pattern mining methods encoded in ASP to extract interesting rules. We show how user-defined constraints and preferences can be represented declaratively in ASP to allow for transparent and flexible rule set generation, and how rules can be used as explanations to help the user better understand the models. Experimental evaluation with real-world datasets and popular tree-ensemble algorithms demonstrates that our approach is applicable to a wide range of classification tasks.","PeriodicalId":262534,"journal":{"name":"ICLP Technical Communications","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICLP Technical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.345.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We propose a method for generating explainable rule sets from tree-ensemble learners using Answer Set Programming (ASP). To this end, we adopt a decompositional approach where the split structures of the base decision trees are exploited in the construction of rules, which in turn are assessed using pattern mining methods encoded in ASP to extract interesting rules. We show how user-defined constraints and preferences can be represented declaratively in ASP to allow for transparent and flexible rule set generation, and how rules can be used as explanations to help the user better understand the models. Experimental evaluation with real-world datasets and popular tree-ensemble algorithms demonstrates that our approach is applicable to a wide range of classification tasks.
用答案集规划从树-集成学习方法生成可解释规则集
我们提出了一种使用答案集编程(ASP)从树集成学习者生成可解释规则集的方法。为此,我们采用了一种分解方法,在规则构建中利用基本决策树的分裂结构,然后使用ASP编码的模式挖掘方法对其进行评估,以提取感兴趣的规则。我们将展示如何在ASP中声明性地表示用户定义的约束和首选项,以允许透明和灵活的规则集生成,以及如何使用规则作为解释来帮助用户更好地理解模型。使用真实数据集和流行的树集成算法进行的实验评估表明,我们的方法适用于广泛的分类任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信