Learning to Transfer: Generalizable Attribute Learning with Multitask Neural Model Search

Zhi-Qi Cheng, Xiao Wu, Siyu Huang, Jun-Xiu Li, Alexander Hauptmann, Qiang Peng
{"title":"Learning to Transfer: Generalizable Attribute Learning with Multitask Neural Model Search","authors":"Zhi-Qi Cheng, Xiao Wu, Siyu Huang, Jun-Xiu Li, Alexander Hauptmann, Qiang Peng","doi":"10.1145/3240508.3240518","DOIUrl":null,"url":null,"abstract":"As attribute leaning brings mid-level semantic properties for objects, it can benefit many traditional learning problems in multimedia and computer vision communities. When facing the huge number of attributes, it is extremely challenging to automatically design a generalizable neural network for other attribute learning tasks. Even for a specific attribute domain, the exploration of the neural network architecture is always optimized by a combination of heuristics and grid search, from which there is a large space of possible choices to be searched. In this paper, Generalizable Attribute Learning Model (GALM) is proposed to automatically design the neural networks for generalizable attribute learning. The main novelty of GALM is that it fully exploits the Multi-Task Learning and Reinforcement Learning to speed up the search procedure. With the help of parameter sharing, GALM is able to transfer the pre-searched architecture to different attribute domains. In experiments, we comprehensively evaluate GALM on 251 attributes from three domains: animals, objects, and scenes. Extensive experimental results demonstrate that GALM significantly outperforms the state-of-the-art attribute learning approaches and previous neural architecture search methods on two generalizable attribute learning scenarios.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3240518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

As attribute leaning brings mid-level semantic properties for objects, it can benefit many traditional learning problems in multimedia and computer vision communities. When facing the huge number of attributes, it is extremely challenging to automatically design a generalizable neural network for other attribute learning tasks. Even for a specific attribute domain, the exploration of the neural network architecture is always optimized by a combination of heuristics and grid search, from which there is a large space of possible choices to be searched. In this paper, Generalizable Attribute Learning Model (GALM) is proposed to automatically design the neural networks for generalizable attribute learning. The main novelty of GALM is that it fully exploits the Multi-Task Learning and Reinforcement Learning to speed up the search procedure. With the help of parameter sharing, GALM is able to transfer the pre-searched architecture to different attribute domains. In experiments, we comprehensively evaluate GALM on 251 attributes from three domains: animals, objects, and scenes. Extensive experimental results demonstrate that GALM significantly outperforms the state-of-the-art attribute learning approaches and previous neural architecture search methods on two generalizable attribute learning scenarios.
学习迁移:多任务神经模型搜索的可归纳属性学习
由于属性学习为对象提供了中级语义属性,它可以解决多媒体和计算机视觉领域的许多传统学习问题。当面对大量的属性时,自动设计一个可泛化的神经网络用于其他属性学习任务是极具挑战性的。即使对于特定的属性域,神经网络架构的探索也总是采用启发式和网格搜索相结合的方式进行优化,从中有很大的可能选择空间可供搜索。本文提出了广义属性学习模型(GALM)来自动设计用于广义属性学习的神经网络。GALM的主要新颖之处在于它充分利用了多任务学习和强化学习来加快搜索过程。在参数共享的帮助下,GALM能够将预先搜索的体系结构转移到不同的属性域。在实验中,我们对来自动物、物体和场景三个领域的251个属性进行了综合评价。大量的实验结果表明,在两种可推广的属性学习场景下,GALM显著优于最先进的属性学习方法和以前的神经结构搜索方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信