Michael O'Byrne, M. Sugrue, Kinesense Ltd, Anil Vibhoothi, Kokaram
{"title":"Impact of Video Compression on the Performance of Object Detection Systems for Surveillance Applications","authors":"Michael O'Byrne, M. Sugrue, Kinesense Ltd, Anil Vibhoothi, Kokaram","doi":"10.1109/AVSS56176.2022.9959476","DOIUrl":null,"url":null,"abstract":"This study examines the relationship between H.264 video compression and the performance of an object detection network (YOLOv5). We curated a set of 50 surveillance videos and annotated targets of interest (people, bikes, and vehicles). Videos were encoded at 5 quality levels using Constant Rate Factor (CRF) values in the set {22,32,37,42,47}. YOLOv5 was applied to compressed videos and detection performance was analyzed at each CRF level. Test results indicate that the detection performance is generally robust to moderate levels of compression; using a CRF value of 37 instead of 22 leads to significantly reduced bitrates/file sizes without adversely affecting detection performance. However, detection performance degrades appreciably at higher compression levels, especially in complex scenes with poor lighting and fast-moving targets. Finally, retraining YOLOv5 on compressed imagery gives up to a 1% improvement in F1 score when applied to highly compressed footage.","PeriodicalId":408581,"journal":{"name":"2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS56176.2022.9959476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This study examines the relationship between H.264 video compression and the performance of an object detection network (YOLOv5). We curated a set of 50 surveillance videos and annotated targets of interest (people, bikes, and vehicles). Videos were encoded at 5 quality levels using Constant Rate Factor (CRF) values in the set {22,32,37,42,47}. YOLOv5 was applied to compressed videos and detection performance was analyzed at each CRF level. Test results indicate that the detection performance is generally robust to moderate levels of compression; using a CRF value of 37 instead of 22 leads to significantly reduced bitrates/file sizes without adversely affecting detection performance. However, detection performance degrades appreciably at higher compression levels, especially in complex scenes with poor lighting and fast-moving targets. Finally, retraining YOLOv5 on compressed imagery gives up to a 1% improvement in F1 score when applied to highly compressed footage.